Skip to main content
Log in

Boundedness of Commutators of Integral Operators of Fractional Type and \(M_{\alpha , L^{r}\log L}\) Maximal Operator in Variable Lebesgue Spaces

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper we study the commutators of integral operator T in variable Lebesgue spaces \(L^{p(\cdot )}({\mathbb {R}}^n)\), with \(p(\cdot )\in K_0({{\mathbb {R}}^n}) \cap N_{\infty }({{\mathbb {R}}^n})\), where T is the operator with kernel

$$\begin{aligned} K(x,y)=k_1(x-A_1y)\dots k_m(x-A_my), \end{aligned}$$

\(A_1,\dots ,A_m\) are invertible matrices and each \(k_i\) satisfies certain fractional size condition \(S_{n-\alpha _i,\Psi _i}\), and certain fractional Hörmander condition \(H_{n-\alpha _i,\Psi _i}\), with \(\alpha _1+\dots +\alpha _m =n-\alpha \), \(0\le \alpha < n\) and \(\Psi _i\) are Young functions. We obtain the maximal operator \(M_{\alpha ,L^r\log L^{\lambda }}\), with \(1\le r< \frac{\alpha }{n}\) and \(\lambda \ge 0\), and the commutators of T are bounded from \(L^{p(\cdot )}({\mathbb {R}}^n)\) into \(L^{q(\cdot )}({\mathbb {R}}^n)\), for \(\frac{1}{q(\cdot )}=\frac{1}{p(\cdot )}-\frac{\alpha }{n}\) and certain \(p(\cdot )\). Also, in the case \(\alpha =0\) we obtain that the commutator of T satisfies a \(L \log L\)-type endpoint estimate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berezhnoĭ, E.I.: Two-weighted estimations for the Hardy-Littlewood maximal function in ideal Banach spaces. Proc. Am. Math. Soc. 127, 79–87 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bernardis, A., Dalmasso, E., Pradolini, G.: Generalized maximal functions and related operators on weighted Musielak–Orlicz spaces. Ann. Acad. Sci. Fenn. Math. 39(1), 23–50 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bernardis, A.L., Lorente, M., Riveros, M.S.: Weighted inequalities for fractional integral operators with kernel satisfying Hörmander type conditions. Math. Inequal. Appl. 14, 881–895 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Bernardis, A.L., Pradolini, G., Lorente, M., Riveros, M.S.: Composition of fractional Orlicz maximal operators and \({A}_1\)-weights on spaces of homogeneous type. Acta Math. Sin. (Engl. Ser.) 26(8), 1509–1518 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Capone, C., Cruz-Uribe, D., Fiorenza, A.: The fractional maximal operator and fractional integrals on variable \(L^p\) spaces. Rev. Mat. Iberoam. 23(3), 743–770 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cruz-Uribe, D., Fiorenza, A., Neugebauer, C.J.: The maximal function on variable \(L^p\) spaces. Ann. Acad. Sci. Fenn. Math. 28(1), 223–238 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Cruz-Uribe, D.V., Fiorenza, A.: Foundations and Harmonic Analysis. Springer Science & Business Media, Variable Lebesgue Spaces, New York (2013)

    MATH  Google Scholar 

  8. Diening, L., Harjulehto, P., Hästö, P., Ruzicka, M.: Lebesgue and Sovoleb Spaces with Variable Exponents. Lecture Notes in Mathematics, Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  9. Godoy, T., Urciuolo, M.: On certain integral operators of fractional type. Acta Math. Hungar. 82(1–2), 99–105 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hytönen, T., Pérez, C.: The \({L} \log {L}^{\varepsilon }\) endpoint estimate for maximal singular integral operators. J. Math. Anal. Appl. 428(1), 605–626 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ibañez-Firnkorn, G.H., Riveros, M.S.: Certain fractional type operators with Hörmander conditions. Ann. Acad. Sci. Fenn. Math. 43, 913–929 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Ibañez-Firnkorn, G.H., Riveros, M.S.: Commutators of certain fractional type operators with Hörmander conditions, one-weighted and two-weighted inequalities. Math. Inequal. Appl. 23(4), 1361–1389 (2020)

    MathSciNet  MATH  Google Scholar 

  13. Lerner, A.K.: Some remarks on the Hardy–Littlewood maximal function on variable \(L^p\) spaces. Math. Z. 251, 509–521 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lerner, A.K.: On some questions related to the maximal operator on variable \(L^p\) spaces. Trans. Am. Math. Soc. 362(8), 4229–4242 (2010)

    Article  MATH  Google Scholar 

  15. Lerner, A.K., Ombrosi, S., Rivera-Ríos, I.P.: On pointwise and weighted estimates for commutators of Calderón–Zygmund operators. Adv. Math. 319, 153–181 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lorente, M., Riveros, M.S., de la Torre, A.: Weighted estimates for singular integral operators satisfying Hörmander’s conditions of Young type. J. Fourier Anal. Appl. 11(5), 497–509 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Luque, T., Pérez, C., Rela, E.: Optimal exponents in weighted estimates without examples. Math. Res. Lett. 22(1), 183–201 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lorente, M., Martell, J., Riveros, M.S., de la Torre, A.: Generalized Hörmander’s conditions, commutators and weights. J. Math. Anal. Appl. 342(2), 1399–1425 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Martell, J., Pérez, C., Trujillo-González, R.: Lack of natural weighted estimates for some singular integral operators. Trans. Am. Math. Soc. 357(1), 385–396 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Muckenhoupt, B., Wheeden, R.: Weighted norm inequalities for fractional integrals. Trans. Am. Math. Soc. 192, 261–274 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nekvinda, A.: Hardy-Littlewood maximal operator on \(L^{p(x)}({\mathbb{R} }^n)\). Math. Inequal. Appl. 7(2), 255–265 (2004)

    MathSciNet  MATH  Google Scholar 

  22. O’Neil, R.: Fractional integration in Orlicz spaces. I. Trans. Am. Math. Soc. 115, 300–328 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pérez, Carlos: Endpoint estimates for commutators of singular integral operators. J. Funct. Anal. 128(1), 163–185 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pérez, C.: On sufficient conditions for the boundedness of the Hardy–Littlewood maximal operator between weighted \(L^p\)-spaces with different weights. Proc. Lond. Math. Soc. 71(3), 135–157 (1995)

    Article  MATH  Google Scholar 

  25. Rao, M.M., Ren, Z.D.: Monographs and Textbooks in Pure and Applied Mathematics, pp. 12–449. Marcel Dekker, Inc., New York (1991)

    Google Scholar 

  26. Ricci, F., Sjögren, P.: Two-parameter maximal functions in the Heisenberg group. Math. Z. 199(4), 565–575 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  27. Riveros, M., Urciuolo, M.: Weighted inequalities for some integral operators with rough kernels. Cent. Eur. J. Math. 12(4), 636–647 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Rocha, P., Urciuolo, M.: On the \(H^p\)-\(L^q\) boundedness of some fractional integral operators. Czechoslovak Math. J. 62(137), 625–635 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rocha, P., Urciuolo, M.: Errata of the paper "On the \(H^p\)-\(L^q\) boundedness of some fractional integral operators. Czechoslovak Math. J. 64(3), 867–868 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rocha, P., Urciuolo, M.: About integral operators of fractional type on variable Lp spaces. Georgian Math. J. 20(4), 805–816 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. de Francia, R., Ruiz, J.L., Torrea, J.L.: Calderón–Zygmund theory for operator-valued kernels. Adv. Math. 621(1), 7–48 (1986)

    Article  MATH  Google Scholar 

  32. Urciuolo, M., Vallejos, L.: Integral Operators with Rough Kernels in Variable Lebesgue Spaces. Acta Math, Hungar (2020)

    Book  MATH  Google Scholar 

  33. Watson, D.K.: Weighted estimates for singular integrals via Fourier transform estimates. Duke Math. J. 60(2), 389–399 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We wish to thank the referee for useful comments which have led to an improved version of this paper.

Funding

Funding was provided by Secretaria de Ciencia y Tecnología - Universidad Nacional de Córdoba (Grant No. 411/18) and Secretaría General de Ciencia y Tecnología, Universidad Nacional del Sur (Grant No. 24/L126).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Ibañez-Firnkorn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Gonzalo Ibañez-Firnkorn and Lucas Alejandro Vallejos were partially supported by CONICET and SECYT-UNC. Gonzalo Ibañez-Firnkorn partially supported by SGCyT-UNS.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibañez-Firnkorn, G., Vallejos, L.A. Boundedness of Commutators of Integral Operators of Fractional Type and \(M_{\alpha , L^{r}\log L}\) Maximal Operator in Variable Lebesgue Spaces. J Geom Anal 33, 354 (2023). https://doi.org/10.1007/s12220-023-01416-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01416-5

Keywords

Mathematics Subject Classification

Navigation