Skip to main content
Log in

Periodic Solution for Higher Order Prescribed Curvature Problem in a Strip

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper, we first construct one bubbling solution for a higher order prescribed curvature problem with periodic boundary condition in a strip. then, we prove the existence of periodic solution for the higher order prescribed curvature problem in \({\mathbb {R}}^N\), if the prescribed curvature function is periodic. The novelty of the paper is that we obtain the periodic solution directly without involving uniqueness and many complicated estimates. We believe our method will be helpful for other problems related to periodic solution and higher order equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No data was used for the research described in the article.

References

  1. Ambrosetti, A., Azorero, G., Peral, I.: Perturbation of \(-\Delta u-u^{\frac{N+2}{N-2}}=0,\) the scalar curvature problem in \({\mathbb{R} }^N\) and related topics. J. Funct. Anal. 165, 117–149 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bartsch, T., Weth, T.: Multiple solutions of a critical polyharmonic equation. J. Reine Angew. Math. 571, 131–143 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Bartsch, T., Weth, T., Willem, M.: A Sobolev inequality with remainder term and critical equations on domains with topology of the domain. Calc. Var. Partial Differ. Equ. 18, 253–268 (2003)

    Article  MATH  Google Scholar 

  4. Branson, T.: Group representations arising from Lorentz conformal geometry. J. Funct. Anal. 74, 199–291 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chang, S.Y.A., Yang, P.: A perturbation result in prescribing scalar curvature on \(S^n\). Duke Math. J. 64, 27–69 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chang, S.Y.A., Gursky, M., Yang, P.C.: Prescribing scalar curvature on \(S^2\) and \(S^3\). Calc. Var. Partial Differ. Equ. 1, 205–229 (1993)

    Article  Google Scholar 

  7. Chang, S.Y.A., Yang, P.C.: Partial differential equations related to the Gauss–Bonnet–Chern integrand on \(4-\)manifolds. Proc. Conformal, Riemannian and Lagrangian Geometry, Univ. Lecture Ser., vol. 27, Amer. math. Soc., Providence, RI, pp. 1–30 (2002)

  8. Chen, C.-C., Lin, C.-S.: Estimates of the conformal scalar curvature equation via the method of moving planes. Commun. Pure Appl. Math. 50, 971–1017 (1997)

    Article  MathSciNet  Google Scholar 

  9. Chen, C.-C., Lin, C.-S.: Prescribing scalar curvature on \(S^N\). I. A priori estimates. J. Differ. Geom. 57, 67–171 (2001)

    Article  MATH  Google Scholar 

  10. Chen, C.C., Lin, C.S.: Estimate of the conformal scalar curvature equation via the method of moving planes, II. J. Differ. Geom. 49, 115–178 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Deng, Y., Lin, C.-S., Yan, S.: On the prescribed scalar curvature problem in \({\mathbb{R} }^N\), local uniqueness and periodicity. J. Math. Pures Appl. 104, 1013–1044 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Edmunds, D.E., Fortunato, D., Jannelli, E.: Critical exponents, critical dimensions and biharmonic operator. Arch Ration. Mech. Anal. 112, 269–289 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gazzola, F., Grunau, H., Squassina, M.: Existence and non-existence results for critical growth biharmonic elliptic equations. Calc. Var. Partial Differ. Equ. 18, 117–243 (2003)

    Article  MATH  Google Scholar 

  14. Glangetas, L.: Uniqueness of positive solutions of a nonlinear equation involving the critical exponent. Nonlinear Anal. 20, 571–603 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Grunau, H.: Positive solutions to semilinear polyharmonic Dirichlet problem operators involving critical Sobolev exponents. Calc. Var. Partial Differ. Equ. 3, 243–252 (1995)

    Article  MATH  Google Scholar 

  16. Grunau, H., Sweers, G.: The maximum principle and positive principle eigenfunctions for polyharmonic equations. Lect. Notes Pure Appl. Math. 194, 163–182 (1998)

    MATH  Google Scholar 

  17. Grunau, H., Sweers, G.: Positivity for equations involving polyharmonic operators with Dirichlet boundary conditions. Math. Ann. 307, 588–626 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Guo, Y., Liu, J.: Liouville-type theorems for polyharmonic equations in \({\mathbb{R} }^N\) and in \({\mathbb{R} }^N_+\). Proc. R. Soc. Edinb. Sect. A 138, 339–359 (2008)

    Article  MATH  Google Scholar 

  19. Guo, Y., Yan, S.: An elliptic problem with periodic boundary condition involving critical growth. Preprint (2022)

  20. Guo, Y., Peng, S., Yan, S.: Local uniqueness and periodicity induced by concentration. Proc. Lond. Math. Soc. (3) 114, 1005–1043 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guo, Y., Musso, M., Peng, S., Yan, S.: Non-degeneracy of multi-bubbling solutions for the prescribed scalar curvature equations and applications. J. Funct. Anal. 279, 108553 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, Y.Y.: On \(-\Delta u=K(x)u^5\) in \({\mathbb{R} }^3\). Commun. Pure Appl. Math. 46, 303–340 (1993)

    Article  Google Scholar 

  23. Li, Y.Y.: Prescribing scalar curvature on \(S^3, S^4\) and related problems. J. Funct. Anal. 118, 43–118 (1993)

    Article  MathSciNet  Google Scholar 

  24. Li, Y.Y.: Prescribing scalar curvature on \(S^n\) and related problems, Part I. J. Differ. Equ. 120, 319–410 (1995)

    Article  Google Scholar 

  25. Li, Y.Y.: Prescribed scalar curvature on \(S^n\) and related problems II, Existence and comapctness. Commun. Pure Appl. Math. 49, 541–597 (1996)

    Article  Google Scholar 

  26. Li, Y.Y., Wei, J., Xu, H.: Multi-bump solutions of \(-\Delta u=K(x)u^{\frac{n+2}{n-2}}\) on lattices in \({\mathbb{R} }^n\). J. Reine Angew. Math. 743, 163–211 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, Y., Ni, W.-M.: On the conformal scalar curvature equation in \({\mathbb{R} }^N\). Duke Math. J. 57, 859–924 (1988)

    Article  MathSciNet  Google Scholar 

  28. Paneitz, S.: A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds. Preprint

  29. Pucci, P., Serrin, J.: A general variational identity. Indiana Univ. Math. J. 35, 681–703 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pucci, P., Serrin, J.: Critical exponents and critical dimensions for polyharmonic operators. J. Math. Pures Appl. 69, 55–83 (1990)

    MathSciNet  MATH  Google Scholar 

  31. Schoen, R., Zhang, D.: Prescribed calar curvature problem on the \(n-\)sphere. Calc. Var. Partial Differ. Equ. 4, 1–25 (1996)

    Article  MATH  Google Scholar 

  32. Wei, J., Xu, X.: Classification of solutions of higher order conformally invariant equation. Math. Ann. 313, 207–228 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wei, J., Yan, S.: Infinitely many solutions for the prescribed scalar curvature problem on \(S^N,\). J. Funct. Anal. 258, 3048–3081 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yan, S.: Concentration of solutions for the scalar curvature equation on \({\mathbb{R} }^N,\). J. Differ. Equ. 163, 239–264 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxia Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guo is supported by NSFC (No. 12031015, 12271283).

Appendix A: Some Essential Estimates

Appendix A: Some Essential Estimates

In this section, we give some essential estimates which are independent interesting, which we believe they are useful to other related problems involving polyharmonic equations. We use the same notations as in previous sections.

Lemma A.1

It holds

$$\begin{aligned} 0\le P U_{x,\mu }(y)\le \sum _{j=0}^\infty U_{x_j,\mu }(y). \end{aligned}$$

Proof

We have

$$\begin{aligned} \begin{aligned} P U_{x,\mu }(y)=&\int _{\Omega } G(y, z) U^{m^*-1}_{x,\mu }(z)\,dz\\ =&\sum _{j=0}^\infty \int _{\Omega } \Gamma (y, z+LP_j) U^{m^*-1}_{x,\mu }(z)\,dz\\ \le&\sum _{j=0}^\infty \int _{{\mathbb {R}}^N} \Gamma (y, z+ LP_j) U^{m^*-1}_{x,\mu }(z)\,dz\\ =&\sum _{j=0}^\infty U_{x,\mu }(y+LP_j). \end{aligned} \end{aligned}$$

\(\square \)

Let \(\varphi _{x,\mu } = U_{x,\mu } - PU_{x,\mu }.\) Then \(\varphi _{x,\mu }\) has the following expansion.

Lemma A.2

For \(x\in B_1(0)\), it holds

$$\begin{aligned} \varphi _{x,\mu }(y)= & {} - \frac{B}{\mu ^{\frac{N-2m}{2}}}\sum _{j=1}^{\infty } \Gamma (y, x+LP_j) +O\Bigl ( \frac{1}{L^{N-2m} \mu ^{\frac{N+2m}{2}}} \Bigr ), \end{aligned}$$
(A.1)
$$\begin{aligned} \frac{\partial \varphi _{x,\mu }}{\partial x_h}(y)= & {} - \frac{B }{ \mu ^{\frac{N-2m}{2}}}\sum _{j=1}^{\infty } \frac{\partial \Gamma (y, x+LP_j)}{\partial x_h} +O\Bigl ( \frac{1}{L^{N-2m} \mu ^{\frac{N+2m}{2}}} \Bigr ), \end{aligned}$$
(A.2)

and

$$\begin{aligned} \begin{aligned} \frac{\partial \varphi _{x,\mu }}{\partial \mu }(y)=\frac{B (N-2m)}{ 2\mu ^{\frac{N-2m+2}{2}}}\sum _{j=1}^{\infty } \Gamma (y, x+LP_j) +\frac{1}{\mu }O\Bigl ( \frac{1}{L^{N-2m} \mu ^{\frac{N+2m}{2}}} \Bigr ), \end{aligned} \end{aligned}$$
(A.3)

where \(B=\displaystyle \int _{{\mathbb {R}}^N} U_{0, 1}^{m^*-1}\).

Proof

We have

$$\begin{aligned} P U_{x,\mu }(y)= \sum _{j=0}^\infty \int _{\Omega } \Gamma (y, z+ LP_j) U^{m^*-1}_{x,\mu }(z)\,dz. \end{aligned}$$
(A.4)

For \(j=0\), it holds

$$\begin{aligned} \int _{\Omega } \Gamma (y, z) U^{m^*-1}_{x,\mu } =&\int _{{\mathbb {R}}^N} \Gamma (y, z) U^{m^*-1}_{x,\mu }-\int _{{\mathbb {R}}^N\setminus \Omega } \Gamma (y, z) U^{m^*-1}_{x,\mu }\\ =&U_{x,\mu }(y)+O\Bigl ( \int _{{\mathbb {R}}^N\setminus \Omega } \frac{1}{|y-z|^{N-2m}} \frac{1}{ |z|^{N+2m}\mu ^{\frac{N+2m}{2}}}\,dz \Bigr )\\ =&U_{x,\mu }(y)+O\Bigl ( \frac{1}{ L^{N-2m}\mu ^{\frac{N+2m}{2}}} \Bigr ), \end{aligned}$$

while \(j> 0\), we have

$$\begin{aligned} \begin{aligned}&\int _{\Omega } \Gamma (y, z+ LP_j) U^{m^*-1}_{x,\mu }\\&\quad =\int _{B_\delta (x)} \Gamma (y, z+ LP_j) U^{m^*-1}_{x,\mu }+O\Bigl ( \int _{\Omega \setminus B_\delta (x)} \Gamma (y, z+LP_j) \frac{1}{|z-x|^{N+2m}} \frac{1}{ \mu ^{\frac{N+2m}{2}}} \Bigr )\\&\quad = \frac{1}{\mu ^{\frac{N-2m}{2}}} \int _{B_{\delta \mu }(0)} \Gamma (y,\mu ^{-1}z+x+LP_j) U^{m^*-1}_{0,1} +O\Bigl ( \frac{1}{|LP_j|^{N-2m} \mu ^{\frac{N+2m}{2}} } \Bigr ) \\&\quad = \frac{B \Gamma (y, x+ LP_j)}{ \mu ^{\frac{N-2m}{2}}} +O\Bigl ( \frac{1}{|LP_j|^{N-2m} \mu ^{\frac{N+2m}{2}} } \Bigr ). \end{aligned} \end{aligned}$$

So we have proved (A.1).

Using (A.4), we have

$$\begin{aligned} \frac{\partial P U_{x,\mu }}{\partial x_h}(y)= (m^*-1) \sum _{j=0}^\infty \int _{\Omega } \Gamma (y, z+LP_j) U^{m^*-2}_{x,\mu }(z)\frac{\partial U_{x,\mu }}{\partial x_h}(z)\,dz. \end{aligned}$$
(A.5)

For \(j=0\), it holds

$$\begin{aligned} \begin{aligned}&(m^*-1) \int _{\Omega } \Gamma (y, z) U^{m^*-2}_{x,\mu }\frac{\partial U_{x,\mu }}{\partial x_h}\\&\quad =(m^*-1) \int _{{\mathbb {R}}^N} \Gamma (y, z) U^{m^*-2}_{x,\mu }\frac{\partial U_{x,\mu }}{\partial x_h}-(m^*-1) \int _{{\mathbb {R}}^N\setminus \Omega } \Gamma (y, z) U^{m^*-2}_{x,\mu }\frac{\partial U_{x,\mu }}{\partial x_h}\\&\quad = \int _{{\mathbb {R}}^N} \Gamma (y,z) (-\Delta )^m\left( \frac{\partial U_{x,\mu }}{\partial x_h} \right) + O\Bigl ( \int _{{\mathbb {R}}^N\setminus \Omega } \frac{1}{|y-z|^{N-2m}} \frac{1}{|z-x|^{N+2m+1}} \frac{1}{\mu ^{\frac{N+2m}{2}}} \Bigr ) \\&\quad = \frac{\partial U_{x,\mu }}{\partial x_h}(y) + O\Bigl ( \frac{1}{ L^{N-2m}\mu ^{\frac{N+2m}{2}}} \Bigr ), \end{aligned} \end{aligned}$$

while \(j> 0\), we have

$$\begin{aligned}&(m^*-1)\int _{\Omega } \Gamma (y, z+ LP_j) U^{m^*-2}_{x,\mu }\frac{\partial U_{x,\mu }}{\partial x_h}\\&\quad =-(m^*-1)\int _{\Omega } \Gamma (y, z+ LP_j) U^{m^*-2}_{x,\mu }\frac{\partial U_{x,\mu }}{\partial z_h}\\&\quad =-(m^*-1)\int _{B_\delta (x)} \Gamma (y, z+ LP_j) U^{m^*-2}_{x,\mu }\frac{\partial U_{x,\mu }}{\partial z_h}\\&\qquad +O \Bigl ( \int _{\Omega \setminus B_\delta (x)} \Gamma (y, z+ LP_j) U^{m^*-2}_{x,\mu }\frac{\partial U_{x,\mu }}{\partial z_h} \Bigr )\\&\quad = \int _{B_\delta (x)} \frac{ \partial \Gamma (y,z+LP_j) }{ \partial z_h } U^{m^*-1}_{x,\mu } + O \Bigl ( \frac{1}{|LP_j|^{N-2m}} \frac{1}{\mu ^{\frac{N+2m}{2}}} \Bigr ) \\&\quad = \frac{1}{\mu ^{\frac{N-2m}{2}}} \int _{B_{\delta \mu }(0)} \frac{ \partial \Gamma (y,\mu ^{-1}z+x+LP_j) }{ \partial x_h } U^{m^*-1}_{0,1} + O \Bigl ( \frac{1}{|LP_j|^{N-2m}} \frac{1}{\mu ^{\frac{N+2m}{2}}} \Bigr ) \\&\quad = \frac{1}{\mu ^{\frac{N-2m}{2}}} \frac{ \partial \Gamma (y,x+LP_j) }{ \partial x_h }\int _{B_{\delta \mu }(0)} U^{m^*-1}_{0,1} + O \Bigl ( \frac{1}{|LP_j|^{N-2m}} \frac{1}{\mu ^{\frac{N+2m}{2}}} \Bigr ) \\&\quad = \frac{B}{\mu ^{\frac{N-2m}{2}}} \frac{ \partial \Gamma (y,x+LP_j) }{ \partial x_h } +O \Bigl ( \frac{1}{\mu ^{\frac{N-2m}{2}}} \frac{1}{|LP_j|^{N-2m+1}} \int _{{\mathbb {R}}^N \setminus B_{\delta \mu }(0)} U_{0,1}^{m^*-1} \Bigr )\\&\qquad + O \Bigl ( \frac{1}{|LP_j|^{N-2m}} \frac{1}{\mu ^{\frac{N+2m}{2}}} \Bigr ) \\&\quad = \frac{B}{\mu ^{\frac{N-2m}{2}}} \frac{ \partial \Gamma (y,x+LP_j) }{ \partial x_h } + O \Bigl ( \frac{1}{|LP_j|^{N-2m}} \frac{1}{\mu ^{\frac{N+2m}{2}}} \Bigr ). \\ \end{aligned}$$

So we have proved (A.2).

Using (A.4), we also have

$$\begin{aligned} \frac{\partial P U_{x,\mu }}{\partial \mu }(y)= (m^*-1) \sum _{j=0}^\infty \int _{\Omega } \Gamma (y, z+LP_j) U^{m^*-2}_{x,\mu }(z)\frac{\partial U_{x,\mu }}{\partial \mu }(z)\,dz. \end{aligned}$$
(A.6)

For \(j=0\), it holds

$$\begin{aligned} \begin{aligned}&(m^*-1) \int _{\Omega } \Gamma (y, z) U^{m^*-2}_{x,\mu }\frac{\partial U_{x,\mu }}{\partial \mu }\\&\quad =(m^*-1) \int _{{\mathbb {R}}^N} \Gamma (y, z) U^{m^*-2}_{x,\mu }\frac{\partial U_{x,\mu }}{\partial \mu }-(m^*-1) \int _{{\mathbb {R}}^N\setminus \Omega } \Gamma (y, z) U^{m^*-2}_{x,\mu }\frac{\partial U_{x,\mu }}{\partial \mu }\\&\quad = \frac{\partial U_{x,\mu }}{\partial \mu }(y) + \frac{1}{\mu } O\Bigl ( \frac{1}{ L^{N-2m}\mu ^{\frac{N+2m}{2}}} \Bigr ), \end{aligned} \end{aligned}$$

while \(j > 0\), we have

$$\begin{aligned}{} & {} (m^*-1)\int _{\Omega } \Gamma (y, z+ LP_j) U^{m^*-2}_{x,\mu }\frac{\partial U_{x,\mu }}{\partial \mu }\\{} & {} \quad =\frac{\partial }{\partial \mu } \left( \int _{\Omega } \Gamma (y, z+ LP_j) U^{m^*-1}_{x,\mu } \right) \\{} & {} \quad =\frac{\partial }{\partial \mu } \left( \int _{B_\delta (x)} \Gamma (y, z+ LP_j) U^{m^*-1}_{x,\mu } +O\Bigl ( \int _{\Omega \setminus B_\delta (x)} \Gamma (y, z+ LP_j) U^{m^*-1}_{x,\mu } \Bigr ) \right) \\{} & {} \quad = \frac{\partial }{\partial \mu } \left( \frac{1}{\mu ^{\frac{N-2m}{2}}} \int _{B_{\delta \mu }(0)} \Gamma (y,\mu ^{-1}z+x+LP_j) U^{m^*-1}_{0,1} \right) + \frac{1}{\mu } O \Bigl ( \frac{1}{|LP_j|^{N-2m}} \frac{1}{\mu ^{\frac{N+2m}{2}}} \Bigr ) \\{} & {} \quad = \frac{\partial }{\partial \mu } \left( \frac{\Gamma (y,x+LP_j)}{\mu ^{\frac{N-2m}{2}}} \int _{B_{\delta \mu }(0)} U^{m^*-1}_{0,1} \right) + \frac{1}{\mu } O \Bigl ( \frac{1}{|LP_j|^{N-2m}} \frac{1}{\mu ^{\frac{N+2m}{2}}} \Bigr ) \\{} & {} \quad = \frac{\partial }{\partial \mu } \left( \frac{B\Gamma (y,x+LP_j)}{\mu ^{\frac{N-2m}{2}}} \right) + \frac{1}{\mu } O \Bigl ( \frac{1}{|LP_j|^{N-2m}} \frac{1}{\mu ^{\frac{N+2m}{2}}} \Bigr ) \\{} & {} \quad = -\frac{(N-2m)B\Gamma (y,x+LP_j)}{2\mu ^{\frac{N-2m+2}{2}}} + \frac{1}{\mu } O \Bigl ( \frac{1}{|LP_j|^{N-2m}} \frac{1}{\mu ^{\frac{N+2m}{2}}} \Bigr ). \end{aligned}$$

So we have proved (A.3). \(\square \)

To determine \(x_{0,L}\) and \(\mu _L\) for the bubbling solution of (1.1), we estimate the following quantities

$$\begin{aligned} \int _{\Omega } (-\Delta )^m (PU_{x,\mu } ) \partial _h( PU_{x,\mu }) -\int _{\Omega } K(y) ( PU_{x,\mu })^{m^*-1} \partial _h( PU_{x,\mu }). \end{aligned}$$
(A.7)

First, we have

$$\begin{aligned} \begin{aligned}&\int _{\Omega } (-\Delta )^m (PU_{x,\mu } ) \partial _h( PU_{x,\mu }) -\int _{\Omega } K(y) ( PU_{x,\mu })^{m^*-1} \partial _h( PU_{x,\mu }) \\&\quad = \int _{\Omega } U_{x,\mu }^{m^*-1} \partial _h( PU_{x,\mu }) -\int _{\Omega } K(y) ( PU_{x,\mu })^{m^*-1} \partial _h( PU_{x,\mu }). \end{aligned} \end{aligned}$$
(A.8)

Using Lemma A.1, we have

$$\begin{aligned} \begin{aligned}&\left| \int _{\Omega \setminus B_1(x) } U_{x,\mu }^{m^*-1} \partial _h( PU_{x,\mu }) -\int _{\Omega \setminus B_1(x)} K(y) ( PU_{x,\mu })^{m^*-1} \partial _h( PU_{x,\mu }) \right| \\&\quad \le C \mu ^{\alpha (h)} \left( \int _{\Omega \setminus B_1(x)} U_{x,\mu }^{m^*-1} PU_{x,\mu } + \int _{\Omega \setminus B_1(x)} ( PU_{x,\mu })^{m^*} \right) \\&\quad \le C \mu ^{\alpha (h)} \int _{\Omega \setminus B_1(x)} \left( \sum \limits _{j=0}^\infty U_{x_j,\mu } \right) ^{m^*} \\&\quad \le C \mu ^{\alpha (h)+N} \int _{\Omega \setminus B_1(x)} \left[ \frac{1}{ (1+\mu |y-x|)^{N-2m}} +\sum \limits _{j=1}^\infty \frac{1}{ (1+\mu |y-x-LP_j|)^{N-2m} } \right] ^{m^*} \\&\quad \le C \mu ^{\alpha (h)+N} \int _{\Omega \setminus B_1(x)} \left[ \frac{1}{ (1+\mu |y-x|)^{N-2m}} +\frac{1}{(1+\mu |y - x|)^{\frac{N-2m}{2} +\theta }} \frac{1}{ (\mu L)^{\frac{N-2m}{2}-\theta } } \right] ^{m^*} \\&\quad \le C \mu ^{\alpha (h)-N}, \end{aligned} \end{aligned}$$

where \(\theta > 0\) is a small constant.

On the other hand, we write

$$\begin{aligned} \begin{aligned}&\int _{ B_1(x)} U_{x,\mu }^{m^*-1} \partial _h( PU_{x,\mu }) -\int _{B_1(x)} K(y) ( PU_{x,\mu })^{m^*-1} \partial _h( PU_{x,\mu }) \\&\quad = \int _{ B_1(x)} \left( U_{x,\mu }^{m^*-1} - (PU_{x,\mu })^{m^*-1} \right) \partial _h( PU_{x,\mu }) \\&\qquad -\int _{B_1(x)} (K(y)-1) ( PU_{x,\mu })^{m^*-1} \partial _h( PU_{x,\mu }) \\&\quad := J_1-J_2. \end{aligned} \end{aligned}$$

Note that for \(N< 4m, \; (N-2m)(m^*-2)> N,\) while for \(N>4\,m, \; (N-2\,m)(m^*-2)<N.\) Then by Lemma A.2, we have

$$\begin{aligned} \begin{aligned} J_1=&\int _{ B_1(x)} \left( U_{x,\mu }^{m^*-1} - (PU_{x,\mu })^{m^*-1} \right) \partial _hU_{x,\mu } - \int _{B_1(x)} \left( U_{x,\mu }^{m^*-1} - (PU_{x,\mu })^{m^*-1} \right) \partial _h\varphi _{x,\mu } \\ =&(m^*-1)\int _{ B_1(x)} U_{x,\mu }^{m^*-2} \varphi _{x,\mu } \partial _hU_{x,\mu } + \mu ^{\alpha (h)} O\left( \int _{B_1(x)} U_{x,\mu }^{m^*-2} \varphi _{x,\mu }^2 \right) \\ =&(m^*-1)\int _{ B_1(x)} U_{x,\mu }^{m^*-2} \varphi _{x,\mu } \partial _hU_{x,\mu } + \mu ^{\alpha (h)}O\left( \frac{1}{\mu ^{N-2m} L^{2N-4m}} \int _{B_1(x)} U_{x,\mu }^{m^*-2} \right) \\ =&(m^*-1)\int _{B_1(x)} U_{x,\mu }^{m^*-2} \varphi _{x,\mu } \partial _hU_{x,\mu } + \mu ^{\alpha (h)}O\left( \frac{1}{\mu ^{2\beta }} +\frac{1}{\mu ^N} \right) , \\ \end{aligned} \end{aligned}$$

since \(\mu \sim L^{\frac{N-2m}{\beta -N+2m}}.\)

We also have

$$\begin{aligned} \begin{aligned} J_2=&\int _{B_1(x)} (K(y)-1) ( PU_{x,\mu })^{m^*-1} \partial _hU_{x,\mu } - \int _{B_1(x)} (K(y)-1) ( PU_{x,\mu })^{m^*-1} \partial _h\varphi _{x,\mu } \\ =&\int _{B_1(x)} (K(y)-1) U_{x,\mu }^{m^*-1} \partial _hU_{x,\mu } + \mu ^{\alpha (h)} O \left( \int _{B_1(x)} |K(y)-1| U_{x,\mu }^{m^*-1} |\varphi _{x,\mu }| \right) \\ =&\int _{B_1(x)} (K(y)-1) U_{x,\mu }^{m^*-1} \partial _hU_{x,\mu } + \mu ^{\alpha (h)} O \left( \frac{1}{\mu ^{\frac{N-2m}{2}} L^{N-2m} } \int _{B_1(x)} |y|^\beta U_{x,\mu }^{m^*-1} \right) \\ =&\int _{B_1(x)} (K(y)-1) U_{x,\mu }^{m^*-1} \partial _hU_{x,\mu } + \mu ^{\alpha (h)} O \left( \frac{|x|^\beta }{(\mu L)^{N-2m} } + \frac{1}{\mu ^N } \right) \\ =&\int _{B_1(x)} (K(y)-1) U_{x,\mu }^{m^*-1} \partial _hU_{x,\mu } + \mu ^{\alpha (h)} O \left( \frac{1}{\mu ^{2\beta }} +\frac{1}{\mu ^N } \right) , \end{aligned} \end{aligned}$$

since \(|x|=o\left( \frac{1}{\mu } \right) .\)

Thus, we obtain

$$\begin{aligned} \begin{aligned}&\int _{\Omega } (-\Delta )^m (PU_{x,\mu } ) \partial _h( PU_{x,\mu }) -\int _{\Omega } K(y) ( PU_{x,\mu })^{m^*-1} \partial _h( PU_{x,\mu }) \\&\quad = (m^*-1)\int _{ B_1(x)} U_{x,\mu }^{m^*-2} \varphi _{x,\mu } \partial _hU_{x,\mu } -\int _{B_1(x)} (K(y)-1) U_{x,\mu }^{m^*-1} \partial _hU_{x,\mu } \\&\qquad + \mu ^{\alpha (h)}O\left( \frac{1}{\mu ^{2\beta }} +\frac{1}{\mu ^N} \right) . \end{aligned} \end{aligned}$$
(A.9)

Proposition A.3

For \(h=1, \ldots , N\), we have

$$\begin{aligned} \begin{aligned}&\int _{\Omega } (-\Delta )^m (PU_{x,\mu } ) \frac{\partial PU_{x,\mu }}{\partial x_h} -\int _{\Omega } K(y) ( PU_{x,\mu })^{m^*-1} \frac{\partial PU_{x,\mu }}{\partial x_h} \\&\quad = \frac{B_h \mu x_h}{\mu ^{\beta _h - 1 } } + O \left( \frac{1}{\mu ^\beta L} + \frac{1}{\mu ^{\beta _M+\sigma -1}} + \frac{(\mu x_h)^2}{\mu ^{\beta _h -1}} \right) , \end{aligned} \end{aligned}$$
(A.10)

where \(B_h\) is a non-zero constant, \(h=1,\ldots , N\).

Proof

For \(h=1,\ldots , N\), we have

$$\begin{aligned} \begin{aligned}&(m^*-1)\int _{ B_1(x)} U_{x,\mu }^{m^*-2} \varphi _{x,\mu } \frac{\partial U_{x,\mu }}{\partial x_h} \\&\quad = -\frac{(m^*-1)B}{\mu ^{\frac{N-2m}{2}}} \sum \limits _{j=1}^\infty \int _{B_1(x)} U_{x,\mu }^{m^*-2} \frac{\partial U_{x,\mu }}{\partial x_h} \Gamma (y,x+LP_j)\\&\qquad +O \left( \frac{\mu }{L^{N-2m} \mu ^{\frac{N+2m}{2}}} \int _{B_1(x)} U_{x,\mu }^{m^* -1} \right) \\&\quad = \frac{ B }{ \mu ^{\frac{N-2m}{2}}} \sum \limits _{j=1}^\infty \int _{B_1(x)} \frac{\partial U_{x,\mu }^{m^*-1} }{ \partial y_h} \Gamma (y,x+LP_j) +O \left( \frac{1}{\mu ^{N-1}L^{N-2m}} \right) \\&\quad = -\frac{ B }{ \mu ^{\frac{N-2m}{2}}} \sum \limits _{j=1}^\infty \int _{B_1(x)} U_{x,\mu }^{m^*-1} \frac{ \partial \Gamma (y,x+LP_j)}{\partial y_h} +O \left( \frac{1}{\mu ^{\beta +2m-1}} \right) \\&\quad = -\frac{ B^2 }{ \mu ^{N-2m}L^{N-2m+1}} \sum \limits _{j=1}^\infty \frac{ \partial \Gamma (y,P_j)}{\partial y_h} \Bigg |_{y=0} +O \left( \frac{1}{\mu ^{\beta +2}L^3} + \frac{1}{\mu ^{\beta +2m-1}} \right) \\&\quad = O\left( \frac{1}{\mu ^\beta L} \right) . \end{aligned} \end{aligned}$$
(A.11)

On the other hand,

$$\begin{aligned} \begin{aligned}&\int _{B_1(x)} (K(y)-1) U_{x,\mu }^{m^*-1} \frac{\partial U_{x,\mu }}{\partial x_h} \\&\quad = \int _{B_\delta (x)} \sum \limits _{i=1}^N a_i |y_i|^{\beta _i} U_{x,\mu }^{m^*-1} \frac{\partial U_{x,\mu }}{\partial x_h} +O \left( \frac{1}{\mu ^{\beta _M+\sigma -1}} \right) \\&\quad = - \int _{B_{\delta \mu } (0)} \sum \limits _{i=1}^N a_i | y_i +\mu x_i |^{\beta _i} \frac{1}{\mu ^{\beta _i - 1}} U_{0,1}^{m^*-1} \frac{\partial U_{0,1}}{\partial y_h} + O \left( \frac{1}{\mu ^{\beta _M+\sigma -1}} \right) \\&\quad = - \int _{B_{\delta \mu } (0)} a_h | y_h +\mu x_h |^{\beta _h} \frac{1}{\mu ^{\beta _h - 1}} U_{0,1}^{m^*-1} \frac{\partial U_{0,1}}{\partial y_h} + O \left( \frac{1}{\mu ^{\beta _M+\sigma -1}} \right) \\&\quad = -\frac{a_h \mu x_h}{\mu ^{\beta _h - 1 }} \int _{B_{\delta \mu } (0)} \beta _h |y_h|^{\beta _h - 2} y_h U_{0,1}^{m^* - 1} \frac{\partial U_{0,1}}{\partial y_h} + O \left( \frac{1}{\mu ^{\beta _M+\sigma -1}} + \frac{(\mu x_h)^2}{\mu ^{\beta _h -1}} \right) \\&\quad = - \frac{B_h \mu x_h}{\mu ^{\beta _h - 1 } } + O \left( \frac{1}{\mu ^{\beta _M+\sigma -1}} + \frac{(\mu x_h)^2}{\mu ^{\beta _h -1}} \right) , \end{aligned} \end{aligned}$$
(A.12)

where

$$\begin{aligned} B_h = a_h\int _{ {\mathbb {R}}^N} \beta _h |y_h|^{\beta _h - 2} y_h U_{0,1}^{m^* - 1} \frac{\partial U_{0,1}}{\partial y_h} \end{aligned}$$

is a non-zero constant.

Combining (A.9), (A.11) and (A.12), we have proved Proposition A.3. \(\square \)

Proposition A.4

It holds

$$\begin{aligned} \begin{aligned}&\int _{\Omega } (-\Delta )^m (PU_{x,\mu } ) \frac{\partial PU_{x,\mu }}{\partial \mu } -\int _{\Omega } K(y) ( PU_{x,\mu })^{m^*-1} \frac{\partial PU_{x,\mu }}{\partial \mu } \\&\quad = -\frac{(m^*-1) B \int _{{\mathbb {R}}^N} U_{0,1}^{m^*-2} \psi _0 }{ \mu ^{N-2m+1} L^{N-2m}} \sum \limits _{j=1}^\infty \Gamma (P_j,0) -\frac{1}{\mu ^{\beta +1}} \sum \limits _{i\in J} a_i \int _{{\mathbb {R}}^N} |y_i|^{\beta } U_{0,1}^{m^*-1} \psi _0 \\&\qquad +o\left( \frac{1}{\mu ^{\beta + 1}} \right) , \end{aligned} \end{aligned}$$
(A.13)

where \(J = \{ j \;: \; \beta _j = \beta \}\) and \(\psi _0\) is defined in (2.6).

Proof

We have

$$\begin{aligned} \begin{aligned}&(m^*-1) \int _{B_1(x)} U_{x,\mu }^{m^*-2}\varphi _{x,\mu } \frac{\partial U_{x,\mu }}{\partial \mu } \\&\quad = -\frac{(m^*-1) B}{ \mu ^{\frac{N-2m}{2}}} \sum \limits _{j=1}^\infty \int _{B_1(x)} U_{x,\mu }^{m^*-2} \frac{\partial U_{x,\mu }}{\partial \mu } \Gamma (y,x+LP_j)\\&\qquad +O\left( \frac{1}{L^{N-2m} \mu ^{\frac{N+2m}{2}} \mu } \int _{B_1(x)} U_{x,\mu }^{m^*-1} \right) \\&\quad = -\frac{(m^*-1) B}{ \mu ^{N-2m+1}} \sum \limits _{j=1}^\infty \int _{B_{\mu }(0)} U_{0,1}^{m^*-2} \psi _0 \Gamma (\mu ^{-1}y,LP_j) +O\left( \frac{1}{\mu ^{N+1}L^{N-2m}} \right) \\&\quad = -\frac{(m^*-1) B}{ \mu ^{N-2m+1}} \sum \limits _{j=1}^\infty \int _{B_{\mu }(0)} U_{0,1}^{m^*-2} \psi _0 \Gamma (0,LP_j) +O\left( \frac{1}{\mu ^{\beta + 1 +2m}} +\frac{1}{\mu ^{\beta + 3} L^2} \right) \\&\quad = -\frac{(m^*-1) B \int _{{\mathbb {R}}^N} U_{0,1}^{m^*-2} \psi _0 }{ \mu ^{N-2m+1} L^{N-2m}} \sum \limits _{j=1}^\infty \Gamma (P_j,0) +O\left( \frac{1}{\mu ^{\beta + 1 +2m}} +\frac{1}{\mu ^{\beta + 3} L^2} \right) . \end{aligned} \end{aligned}$$
(A.14)

On the other hand, we have

$$\begin{aligned}&\int _{B_1(x)} (K(y)-1) U_{x,\mu }^{m^*-1}\frac{\partial U_{x,\mu }}{\partial \mu } \nonumber \\&\quad = \int _{B_{\delta } (x)} \sum \limits _{i=1}^N a_i |y_i|^{\beta _i} U_{x,\mu }^{m^*-1} \frac{\partial U_{x,\mu }}{\partial \mu } +O\left( \frac{1}{\mu ^{\beta _M+\sigma + 1}} \right) \nonumber \\&\quad = \int _{B_{\delta \mu } (0)} \sum \limits _{i=1}^N a_i |y_i+\mu x_i|^{\beta _i} \frac{1}{\mu ^{\beta _i+1}}U_{0,1}^{m^*-1} \psi _0 +O\left( \frac{1}{\mu ^{\beta _M+\sigma + 1}} \right) \nonumber \\&\quad = \int _{B_{\delta \mu } (0)} \sum \limits _{i=1}^N a_i |y_i|^{\beta _i} \frac{1}{\mu ^{\beta _i+1}}U_{0,1}^{m^*-1} \psi _0 +o\left( \frac{1}{\mu ^{\beta + 1}} \right) \nonumber \\&\quad = \int _{B_{\delta \mu } (0)} \sum \limits _{i\in J} a_i |y_i|^{\beta } \frac{1}{\mu ^{\beta +1}}U_{0,1}^{m^*-1} \psi _0 +o\left( \frac{1}{\mu ^{\beta + 1}} \right) \nonumber \\&\quad = \frac{1}{\mu ^{\beta +1}} \sum \limits _{i\in J} a_i \int _{{\mathbb {R}}^N} |y_i|^{\beta } U_{0,1}^{m^*-1} \psi _0 +o\left( \frac{1}{\mu ^{\beta + 1}} \right) . \end{aligned}$$
(A.15)

Combining (A.9), (A.14) and (A.15), we finish the proof of Proposition A.4. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Wu, S. Periodic Solution for Higher Order Prescribed Curvature Problem in a Strip. J Geom Anal 33, 352 (2023). https://doi.org/10.1007/s12220-023-01410-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01410-x

Keywords

Mathematics Subject Classification

Navigation