Skip to main content
Log in

Existence and Concentration of Solutions for a 1-Biharmonic Choquard Equation with Steep Potential Well in \({{\textbf{R}}}^{N}\)

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper, we investigate the existence and concentration of solutions for the following 1-biharmonic Choquard equation with steep potential well

$$\begin{aligned} {\left\{ \begin{array}{ll} \Delta _{1}^{2}-\Delta _{1} u+(1+\lambda V(x))\frac{u}{|u|}=\left( I_{\mu } * F(u)\right) f(u) &{} \text {in }\mathbb {R}^{N}, \\ u\in {\text {BL}}(\mathbb {R}^{N}), \end{array}\right. } \end{aligned}$$

where \(N\ge 3\), \(\lambda >0\) is a positive parameter, \(V:\mathbb {R}^N\rightarrow \mathbb {R}\), \(f:\mathbb {R}\rightarrow \mathbb {R}\) are continuous functions verifying further conditions, \(\Omega ={\text {int}}(V^{-1}(\{0\}))\) has nonempty interior and \(I_{\mu }:\mathbb {R}^{N}\rightarrow \mathbb {R}\) is the Riesz potential of order \(\mu \in (N-1, N)\). For \(\lambda >0\) large enough, we prove the existence of a nontrivial solution \(u_{\lambda }\) of the problem above via variational methods and the concentration behavior of \(u_{\lambda }\) which is explored on the set \(\Omega \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No data, models, or code was generated or used during the study.

References

  1. Alves, C.O., de Morais Filho, D.C., Souto, M.A.S.: Multiplicity of positive solutions for a class of problems with critical growth in \(\mathbb{R}^N\). Proc. Edinb. Math. Soc. (2) 52(1), 1–21 (2009)

  2. Alves, C.O., Figueiredo, G., Pimenta, M.T.O.: Existence and profile of ground-state solutions to a 1-Laplacian problem in \(\mathbb{R}^N\). Bull. Braz. Math. Soc. (N.S.) 51(3), 863–886 (2020)

  3. Alves, C.O., Nóbrega, A.B., Yang, M.: Multi-bump solutions for Choquard equation with deepening potential well. Calc. Var. Partial Differ. Equ. 55(3), 28, Art. 48 (2016)

  4. Alves, C.O., Souto, M.A.S.: Multiplicity of positive solutions for a class of problems with exponential critical growth in \(\mathbb{R} ^2\). J. Differ. Equ. 244(6), 1502–1520 (2008)

    Article  MATH  Google Scholar 

  5. Alves, C.O., Yang, M.: Multiplicity and concentration of solutions for a quasilinear Choquard equation. J. Math. Phys. 55(6), 061502, 21 (2014)

  6. Anthal, G.C., Giacomoni, J., Sreenadh, K.: Some existence and uniqueness results for logistic Choquard equations. Rend. Circ. Mat. Palermo (2) 71(3), 997–1034 (2022)

  7. Anzellotti, G.: The Euler equation for functionals with linear growth. Trans. Am. Math. Soc. 290(2), 483–501 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bai, Y., Papageorgiou, N.S., Zeng, S.: A singular eigenvalue problem for the Dirichlet (p, q)-Laplacian. Math. Z. 300(1), 325–345 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  9. Barile, S., Pimenta, M.T.O.: Some existence results of bounded variation solutions to 1-biharmonic problems. J. Math. Anal. Appl. 463(2), 726–743 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bartsch, T., Pankov, A., Wang, Z.: Nonlinear Schrödinger equations with steep potential well. Commun. Contemp. Math. 3(4), 549–569 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bartsch, T., Wang, Z.: Existence and multiplicity results for some superlinear elliptic problems on \(\mathbb{R} ^N\). Commun. Partial Differ. Equ. 20(9–10), 1725–1741 (1995)

    Article  MATH  Google Scholar 

  12. Bartsch, T., Wang, Z.: Multiple positive solutions for a nonlinear Schrödinger equation. Z. Angew. Math. Phys. 51(3), 366–384 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cen, J., Khan, A.A., Motreanu, D., Zeng, S.: Inverse problems for generalized quasi-variational inequalities with application to elliptic mixed boundary value systems. Inverse Probl. 38, no. 6, Paper No. 065006 (2022)

  14. Chang, K.C.: Variational methods for nondifferentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80(1), 102–129 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  15. Costa, G.S.A.: Existence and concentration of ground state solutions for an equation with steep potential well and exponential critical growth. J. Math. Anal. Appl. 518(2), Paper No. 126708, 17 (2023)

  16. Ding, Y., Tanaka, K.: Multiplicity of positive solutions of a nonlinear Schrödinger equation. Manuscripta Math. 112(1), 109–135 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Figueiredo, G.M., Pimenta, M.T.O.: Existence of bounded variation solutions for a 1-Laplacian problem with vanishing potentials. J. Math. Anal. Appl. 459(2), 861–878 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Figueiredo, G.M., Pimenta, M.T.O.: Nehari method for locally Lipschitz functionals with examples in problems in the space of bounded variation functions. NoDEA Nonlinear Differ. Equ. Appl. 25(5), Paper No. 47, 18 (2018)

  19. Fröhlich, H.: Theory of electrical breakdown in ionic crystals. Proc. R. Soc. Edinburgh A 160(901), 230–241 (1937)

    Google Scholar 

  20. Hajaiej, H.: Schrödinger systems arising in nonlinear optics and quantum mechanics, Part I. Math. Models Methods Appl. Sci. 22, 1250010 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hurtado, E.J., Pimenta, M.T.O., Miyagaki, O.H.: On a quasilinear elliptic problem involving the 1-biharmonic operator and a Strauss type compactness result. ESAIM Control Optim. Calc. Var. 26, Paper No. 86 (2020)

  22. Jia, H., Luo, X.: Existence and concentrating behavior of solutions for Kirchhoff type equations with steep potential well. J. Math. Anal. Appl. 467(2), 893–915 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lee, J., Kim, J.M., Bae, J.H., Park, K.: Existence of nontrivial weak solutions for a quasilinear Choquard equation. J. Inequal. Appl. 2018, Paper No. 42

  24. Liang, S., Zhang, B.: Soliton solutions for quasilinear Schrödinger equations involving convolution and critical nonlinearities. J. Geom. Anal. 32(1), Paper No. 9 (2022)

  25. Lieb, E.H., Loss, M.: Analysis. American Mathematical Society, Providence, RI (2001)

    MATH  Google Scholar 

  26. Papageorgiou, N.S., Rădulescu, V.D., Repovš, D.D.: Nonlinear Analysis-Theory and Methods. Springer, Cham (2019)

    Book  MATH  Google Scholar 

  27. Parini, E., Ruf, B., Tarsi, C.: The eigenvalue problem for the 1-biharmonic operator. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 13(2), 307–332 (2014)

  28. Parini, E., Ruf, B., Tarsi, C.: Limiting Sobolev inequalities and the 1-biharmonic operator. Adv. Nonlinear Anal. 3(suppl. 1), s19–s36 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Parini, E., Ruf, B., Tarsi, C.: Higher-order functional inequalities related to the clamped 1-biharmonic operator. Ann. Mat. Pura Appl. (4) 194(6), 1835–1858 (2015)

  30. Rădulescu, V.D., Repovš, D.D.: Partial Differential Equations with Variable Exponents. CRC, Boca Raton (2015)

    Book  MATH  Google Scholar 

  31. Rădulescu, V.D., Vetro, C.: Anisotropic Navier Kirchhoff problems with convection and Laplacian dependence. Math. Methods Appl. Sci. 46(1), 461–478 (2023)

    Article  MathSciNet  Google Scholar 

  32. Yang, X., Tang, X., Gu, G.: Multiplicity and concentration behavior of positive solutions for a generalized quasilinear Choquard equation. Complex Var. Elliptic Equ. 65(9), 1515–1547 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zeng, S., Migórski, S., Khan, A.A.: Nonlinear quasi-hemivariational inequalities: existence and optimal control. SIAM J. Control. Optim. 59(2), 1246–1274 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang, J., Lou, Z.: Existence and concentration behavior of solutions to Kirchhoff type equation with steep potential well and critical growth. J. Math. Phys. 62(1), Paper No. 011506 (2021)

Download references

Acknowledgements

The authors wish to thank the knowledgeable referees for their remarks in order to improve the presentation of the paper. This work is supported by Research Fund of the Team Building Project for Graduate Tutors in Chongqing (No. yds223010), CTBU Statistics Measure and applications Group Grant (No. ZDPTTD201909).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Li.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, H., Li, L. & Winkert, P. Existence and Concentration of Solutions for a 1-Biharmonic Choquard Equation with Steep Potential Well in \({{\textbf{R}}}^{N}\). J Geom Anal 33, 276 (2023). https://doi.org/10.1007/s12220-023-01341-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01341-7

Keywords

Mathematics Subject Classification

Navigation