Skip to main content
Log in

Unitary Group Orbits Versus Groupoid Orbits of Normal Operators

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We study the unitary orbit of a normal operator \(a\in {{\mathcal {B}}}({{\mathcal {H}}})\), regarded as a homogeneous space for the action of unitary groups associated with symmetrically normed ideals of compact operators. We show with an unified treatment that the orbit is a submanifold of the various ambient spaces if and only if the spectrum of a is finite, and in that case, it is a closed submanifold. For arithmetically mean closed ideals, we show that nevertheless the orbit always has a natural manifold structure, modeled by the kernel of a suitable conditional expectation. When the spectrum of a is not finite, we describe the closure of the orbits of a for the different norm topologies involved. We relate these results to the action of the groupoid of partial isometries via the moment map given by the range projection of normal operators. We show that all these groupoid orbits also have differentiable structures for which the target map is a smooth submersion. For any normal operator a, we also describe the norm closure of its groupoid orbit \({{\mathcal {O}}}_a\), which leads to necessary and sufficient spectral conditions on a ensuring that \({{\mathcal {O}}}_a\) is norm closed and that \({{\mathcal {O}}}_a\) is a closed embedded submanifold of \({{\mathcal {B}}}({{\mathcal {H}}})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andruchow, E., Corach, G.: Differential geometry of partial isometries and partial unitaries. Ill. J. Math. 48(1), 97–120 (2004)

    MathSciNet  MATH  Google Scholar 

  2. Andruchow, E., Larotonda, G.: The rectifiable distance in the unitary Fredholm group. Stud. Math. 196(2), 151–178 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andruchow, E., Stojanoff, D.: Differentiable structure of similarity orbits. J. Oper. Theory 21(2), 349–366 (1989)

    MathSciNet  MATH  Google Scholar 

  4. Andruchow, E., Stojanoff, D.: Geometry of unitary orbits. J. Oper. Theory 26(1), 25–41 (1991)

    MathSciNet  MATH  Google Scholar 

  5. Andruchow, E., Corach, G., Mbekhta, M.: On the geometry of generalized inverses. Math. Nachr. 278(7–8), 756–770 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Andruchow, E., Larotonda, G., Recht, L.: Finsler geometry and actions of the \(p\)-Schatten unitary groups. Trans. Am. Math. Soc. 362(1), 319–344 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beltiţă, D.: “Smooth Homogeneous Structures in Operator Theory’’. Monographs and Surveys in Pure and Applied Mathematics. Chapman & Hall/CRC, Boca Raton (2006)

    Google Scholar 

  8. Beltiţă, D., Odzijewicz, A.: Poisson geometrical aspects of the Tomita–Takesaki modular theory. Preprint at http://arxiv.org/abs/1910.14466

  9. Beltiţă, D., Prunaru, B.: Amenability, completely bounded projections, dynamical systems and smooth orbits. Integr. Equ. Oper. Theory 57(1), 1–17 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Beltiţă, D., Ratiu, T.S.: Symplectic leaves in real Banach Lie–Poisson spaces. Geom. Funct. Anal. 15(4), 753–779 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Beltiţă, D., Ratiu, T.S., Tumpach, A.B.: The restricted Grassmannian, Banach Lie–Poisson spaces, and coadjoint orbits. J. Funct. Anal. 247(1), 138–168 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Beltiţă, D., Goliński, T., Jakimowicz, G., Pelletier, F.: Banach–Lie groupoids and generalized inversion. J. Funct. Anal. 276(5), 1528–1574 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bóna, P.: Extended quantum mechanics. Acta Phys. Slov. 50, 1–198 (2000)

    Google Scholar 

  14. Bóna, P.: Classical Systems in Quantum Mechanics. Springer, Cham (2020)

    Book  MATH  Google Scholar 

  15. Bottazzi, T., Varela, A.: Minimal length curves in unitary orbits of a Hermitian compact operator. Differ. Geom. Appl. 45, 1–22 (2016)

  16. Bourbaki, N.: Topologie Générale, vol. 5. Springer, New York (2006)

    Google Scholar 

  17. Chiumiento, E., Di IorioyLucero, M.E.: Geometry of unitary orbits of pinching operators. J. Math. Anal. Appl. 402(1), 103–118 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Deckard, D., Fialkow, L.A.: Characterization of Hilbert space operators with unitary cross sections. J. Oper. Theory 2(2), 153–158 (1979)

    MathSciNet  MATH  Google Scholar 

  19. Dixmier, J.: Les moyennes invariantes dans les semi-groupes et leurs applications. Acta Sci. Math. (Szeged) 12, 213–227 (1950)

    MathSciNet  MATH  Google Scholar 

  20. Douglas, R.G.: On majorization, factorization, and range inclusion of operators on Hilbert space. Proc. Am. Math. Soc. 17, 413–415 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dragomir, S.: Integral inequalities for Lipschitzian mappings between two Banach spaces and applications. Kodai Math. J. 39(1), 227–251 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fialkow, L.A.: The similarity orbit of a normal operator. Trans. Am. Math. Soc. 210, 129–137 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fialkow, L.A.: A note on limits of unitarily equivalent operators. Trans. Am. Math. Soc. 232, 205–220 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fialkow, L.A.: A note on unitary cross sections for operators. Can. J. Math. 30(6), 1215–1227 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fialkow, L.A.: A note on norm ideals and the operator \(X \rightarrow AX-XB\). Isr. J. Math. 32(4), 331–348 (1979)

    Article  MATH  Google Scholar 

  26. Gellar, R., Page, L.: Limits of unitarily equivalent normal operators. Duke Math. J. 41, 319–322 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gohberg, I.C., Kreĭn, M.G.: Introduction to the Theory of Linear Nonselfadjoint Operators. Translations of Mathematical Monographs, vol. 18. American Mathematical Society, Providence (1969)

    Google Scholar 

  28. Grabowski, J., Kus, M., Marmo, G., Shulman, T.: Geometry of quantum dynamics in infinite-dimensional Hilbert space. J. Phys. A 51(16), 165301 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Halmos, P.R.: “A Hilbert Space Problem Book’’. Graduate Texts in Mathematics, 2nd edn. Springer, New York (1982)

    Book  Google Scholar 

  30. Harris, L.A., Kaup, W.: Linear algebraic groups in infinite dimensions. Ill. J. Math. 21(3), 666–674 (1977)

    MathSciNet  MATH  Google Scholar 

  31. Isbell, J.R.: “Uniform Spaces’’. Mathematical Surveys, No. 12. American Mathematical Society, Providence (1964)

    Google Scholar 

  32. Kaftal, V., Weiss, G.: Majorization and arithmetic mean ideals. Indiana Univ. Math. J. 60(5), 1393–1424 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Larotonda, G.: Estructuras geométricas para las variedades de Banach. Book Preprint (2019). http://mate.dm.uba.ar/~glaroton/notas_gl.html

  34. Neeb, K.-H.: Infinite-dimensional groups and their representations. In: Anker, J.-P., Ørsted, B. (eds.) Lie Theory, Programming Mathematics, pp. 213–328. Birkhäuser, Boston (2004)

    Google Scholar 

  35. Odzijewicz, A., Ratiu, T.S.: Lie–Poisson spaces and reduction. Commun. Math. Phys. 243(1), 1–54 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Odzijewicz, A., Sliżewska, A.: Banach–Lie groupoids associated to \(W^*\)-algebras. J. Symplectic Geom. 14(3), 687–736 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Odzijewicz, A., Jakimowicz, G., Sliżewska, A.: Fiber-wise linear Poisson structures related to \(W^*\)-algebras. J. Geom. Phys. 123, 385–423 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Raeburn, I.: The relationship between a commutative Banach algebra and its maximal ideal space. J. Funct. Anal. 25(4), 366–390 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  39. Roberts, B.W.: Observables, disassembled. Stud. Hist. Philos. Sci. B Stud. Hist. Philos. Mod. Phys. 63, 150–162 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Schatten, R.: Norm ideals of completely continuous operators. In: Ergebnisse der Mathematik und ihrer Grenzgebiete. N. F., Heft 27. Springer, Berlin-Göttingen-Heidelberg (1960)

  41. Schmeding, A., Wockel, C.: The Lie group of bisections of a Lie groupoid. Ann. Glob. Anal. Geom. 48(1), 87–123 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Schmeding, A., Wockel, C.: (Re)constructing Lie groupoids from their bisections and applications to prequantisation. Differ. Geom. Appl. 49, 227–276 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sherman, D.: Unitary orbits of normal operators in von Neumann algebras. J. Reine Angew. Math. 605, 95–132 (2007)

    MathSciNet  MATH  Google Scholar 

  44. Varga, J.V.: Traces on irregular ideals. Proc. Am. Math. Soc. 107(3), 715–723 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  45. Voiculescu, D.: A non-commutative Weyl–von Neumann theorem. Rev. Roumaine Math. Pures Appl. 21(1), 97–113 (1976)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research of the first-named author (D.B.) was supported by a grant of the Ministry of Research, Innovation and Digitization, CNCS/CCCDI – UEFISCDI, project number PN-III-P4-ID-PCE-2020-0878, within PNCDI III. The research of the second-named author (G.L.) was supported by CONICET, ANPCyT, and Universidad de Buenos Aires (Argentina). The authors would like to thank both referees for their helpful corrections and comments, which improved the quality of the manuscript.

Funding

Funding was provided by Secretaria de Ciencia y Tecnica, Universidad de Buenos Aires (Grant no. PICT 2019-04060, Consejo Nacional de Investigaciones Cientficas y Tcnicas, AR (Grant no. PIP 2016-112201, Ministry of Research, Innovation and Digitization, RO (Grant no. PN-III-P4-ID-PCE-2020-0878)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Larotonda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beltiţă, D., Larotonda, G. Unitary Group Orbits Versus Groupoid Orbits of Normal Operators. J Geom Anal 33, 95 (2023). https://doi.org/10.1007/s12220-022-01187-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-022-01187-5

Keywords

Mathematics Subject Classification

Navigation