Skip to main content
Log in

Nodal Solutions for Quasilinear Schrödinger Equations with Asymptotically 3-Linear Nonlinearity

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper, we are concerned with the quasilinear Schrödinger equation

$$\begin{aligned} -\Delta u+V(x)u-u\Delta (u^2)=g(u),\ \ x\in \mathbb {R}^{N}, \end{aligned}$$

where \(N\ge 3\), V is radially symmetric and nonnegative, and g is asymptotically 3-linear at infinity. In the case of \(\inf _{\mathbb {R}^N}V>0\), we show the existence of a least energy sign-changing solution with exactly one node, and for any integer \(k>0\), there is a pair of sign-changing solutions with k nodes. Moreover, in the case of \(\inf _{\mathbb {R}^N}V=0\), the problem above admits a least energy sign-changing solution with exactly one node. The proof is based on variational methods. In particular, some new tricks and the method of sign-changing Nehari manifold depending on a suitable restricted set are introduced to overcome the difficulty resulting from the appearance of asymptotically 3-linear nonlinearities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves, C.O., Wang, Y.J., Shen, Y.T.: Soliton solutions for a class of quasilinear Schrödinger equations with a parameter. J. Differ. Equ. 259, 318–343 (2015)

    Article  MATH  Google Scholar 

  2. Bartsch, T., Willem, M.: Infinitely many radial solutions of a semilinear elliptic problem on \(\mathbb{R} ^N\). Arch. Ration. Mech. Anal. 124, 261–276 (1993)

    Article  MATH  Google Scholar 

  3. Berestycki, H., Lions, P.L.: Nonlinear scalar field equation I. Existence of a ground state. Arch. Ration. Mech. Anal. 82, 313–345 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brüll, L., Lange, H.: Solitary waves for quasilinear Schrödinger equations. Expos. Math. 4, 279–288 (1986)

    MATH  Google Scholar 

  5. Cao, D.M., Zhu, X.P.: On the existence and nodal character of solutions of semilinear elliptic equations. Acta Math. Sci. 8, 345–359 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cassani, D., Wang, Y.J., Zhang, J.J.: A unified approach to singularly perturbed quasilinear Schrödinger equations. Milan J. Math. 88, 507–534 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Castro, A., Cossio, J., Neuberger, J.M.: A sign-changing solution for a superlinear Dirichlet problem. Rocky Mount. J. Math. 27, 1041–1053 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, S.T., Tang, X.H.: Ground state sign-changing solutions for a class of Schrödinger-Poisson type problems in \({\mathbb{R}}{^{3}}\). Z. Angew. Math. Phys. 67(102) (2016)

  9. Chen, X.L., Sudan, R.N.: Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma. Phys. Rev. Lett. 70, 2082–2085 (1993)

    Article  Google Scholar 

  10. Colin, M., Jeanjean, L.: Solutions for a quasilinear Schrödinger equation: a dual approach. Nonlinear Anal. 56, 213–226 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Deng, Y.B., Peng, S.J., Wang, J.X.: Infinitely many sign-changing solutions for quasilinear Schrödinger equations in \(\mathbb{R} ^N\). Commun. Math. Sci. 9, 859–878 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Deng, Y.B., Peng, S.J., Wang, J.X.: Nodal soliton solutions for quasilinear Schrödinger equations with critical exponent. J. Math. Phys. 54, 011504 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. do Ó, J.M., Severo, U.: Solitary waves for a class of quasilinear Schrödinger equations in dimension two. Calc. Var. Partial Differ. Equ. 38, 275–315 (2010)

  14. Fang, X.D., Szulkin, A.: Multiple solutions for a quasilinear Schrödinger equation. J. Differ. Equ. 254, 2015–2032 (2013)

    Article  MATH  Google Scholar 

  15. He, X.M., Qian, A.X., Zou, W.M.: Existence and concentration of positive solutions for quasilinear Schrödinger equations with critical growth. Nonlinearity 26, 3137–3168 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kurihara, S.: Large-amplitude quasi-solitons in superfluid films. J. Phys. Soc. Jpn. 50, 3262–3267 (1981)

    Article  Google Scholar 

  17. Lange, H., Poppenberg, M., Teismann, H.: Nash-Moser methods for the solution of quasilinear Schrödinger equations. Commun. Partial Differ. Equ. 24, 1399–1418 (1999)

    Article  MATH  Google Scholar 

  18. Liu, J.Q., Liu, X.Q., Wang, Z.-Q.: Sign-changing solutions for a parameter-dependent quasilinear equation. Discret. Contin. Dyn. Syst. Ser. S 14, 1779–1799 (2021)

    MathSciNet  MATH  Google Scholar 

  19. Liu, J.Q., Wang, Y.Q., Wang, Z.-Q.: Solutions for quasilinear Schrödinger equations via the Nehari method. Commun. Partial Differ. Equ. 29, 879–901 (2004)

    Article  MATH  Google Scholar 

  20. Liu, W.X., Wang, Z.P.: Least energy nodal solution for nonlinear Schrödinger equation without (AR) condition. J. Math. Anal. Appl. 462, 285–297 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, Z.L., Wang, Z.-Q.: On the Ambrosetti-Rabinowitz superlinear condition. Adv. Nonlinear Stud. 4, 563–574 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Miranda, C.: Un’osservazione su un teorema di Brouwer. Boll. Unione Mat. Ital. 3, 5–7 (1940)

    MathSciNet  MATH  Google Scholar 

  23. Noussair, E.S., Wei, J.C.: On the effect of domain geometry on the existence of nodal solutions in singular perturbations problems. Indiana Univ. Math. J. 46, 1255–1271 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Poppenberg, M., Schmitt, K., Wang, Z.-Q.: On the existence of soliton solutions to quasilinear Schrödinger equations. Calc. Var. Partial Diff. Equ. 14, 329–344 (2002)

    Article  MATH  Google Scholar 

  25. Rabinowitz, P.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270–291 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Willem, M.: Minimax Theorems, Progr. Nonlinear Differential Equations Appl, vol. 24. Birkhäuser, Basel (1996)

    Google Scholar 

  27. Yang, M.B., Santos, C.A., Zhou, J.Z.: Least energy nodal solutions for a defocusing Schrödinger equation with supercritical exponent. Proc. Edinb. Math. Soc. 62, 1–23 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yang, M.B., Santos, C.A., Zhou, J.Z.: Least action nodal solutions for a quasilinear defocusing Schrödinger equation with supercritical nonlinearity. Commun. Contemp. Math. 21, 1850026 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang, H., Liu, Z.S., Tang, C.-L., Zhang, J.J.: Existence and multiplicity of sign-changing solutions for quasilinear Schrödinger equations with sub-cubic nonlinearity, arXiv:2109.08810v1 (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Hui Zhang was supported by China Postdoctoral Science Foundation (No. 2021M691527). Fengjuan Meng was supported by QingLan Project of Jiangsu Province. Jianjun Zhang was supported by National Natural Science Foundation of China (No. 11871123)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Meng, F. & Zhang, J. Nodal Solutions for Quasilinear Schrödinger Equations with Asymptotically 3-Linear Nonlinearity. J Geom Anal 32, 286 (2022). https://doi.org/10.1007/s12220-022-01043-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-022-01043-6

Keywords

Mathematics Subject Classification

Navigation