Skip to main content
Log in

Para-linearity as the Nonassociative Counterpart of Linearity

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In an octonionic Hilbert space H, the octonionic inner product induces maps which fail to be octonionic linear. This fact motivates us to introduce a new notion of the octonionic para-linearity instead. To do this we encounter an insurmountable obstacle. That is, the axiom

$$\begin{aligned} \left\langle pu ,u\right\rangle =p\left\langle u ,u\right\rangle \end{aligned}$$

for any octonion p and element \(u\in H\) introduced by Goldstine and Horwitz in 1964 can not be interpreted as a property to be obeyed by the octonionic para-linear maps. In this article, we solve this critical problem by showing that this axiom is in fact non-independent from others. This enables us to initiate the study of octonionic para-linear maps. We can thus establish the octonionic Riesz representation theorem which, up to isomorphism, identifies two octonionic Hilbert spaces, one of which is the dual of the other. The dual space consists of continuous left para-linear functionals and it becomes a right octonionic module under the multiplication defined in terms of the second associators which measure the failure of octonionic linearity. This right multiplication has an alternative expression

$$\begin{aligned} {(f\odot p)(x)}=pf(p^{-1}x)p, \end{aligned}$$

which is a generalized Moufang identity. Remarkably, the multiplication is compatible with the canonical norm, i.e.,

$$\begin{aligned} \left| \left| f\odot p\right| \right| =\left| \left| f\right| \right| \left| p\right| . \end{aligned}$$

Our final conclusion is that para-linearity is the nonassociative counterpart of linearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Baez, J.C.: The octonions. Bull. Am. Math. Soc. (N.S.) 39(2), 145–205 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berline, N., Getzler, E., Vergne, M.: Heat kernels and Dirac operators, Grundlehren Text Editions. Springer, Berlin (2004). Corrected reprint of the 1992 original

  3. De Leo, S., Abdel-Khalek, K.: Octonionic quantum mechanics and complex geometry. Progr. Theoret. Phys. 96(4), 823–831 (1996)

    Article  MathSciNet  Google Scholar 

  4. Furey, N., Hughes, M.J.: One generation of standard model Weyl representations as a single copy of \({\mathbb{R}}\otimes {\mathbb{C}}\otimes {\mathbb{H}}\otimes {\mathbb{O}}\). Phys. Lett. B, 827, Paper No. 136959 (2022)

  5. Goldstine, H.H., Horwitz, L.P.: Hilbert space with non-associative scalars. I. Math. Ann. 154, 1–27 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  6. Goldstine, H.H., Horwitz, L.P.: Hilbert space with non-associative scalars. II. Math. Ann. 164, 291–316 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  7. Grigorian, S.: \(G_2\)-structures and octonion bundles. Adv. Math. 308, 142–207 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Günaydin, M.: Octonionic Hilbert spaces, the Poincaré group and \(SU(3)\). J. Math. Phys. 17(10), 1875–1883 (1976)

    Article  Google Scholar 

  9. Günaydin, M., Gürsey, F.: Quark structure and octonions. J. Math. Phys. 14, 1651–1667 (1973)

    Article  MathSciNet  Google Scholar 

  10. Harvey, F.R.: Spinors and Calibrations. Perspectives in Mathematics, vol. 9. Academic Press Inc, Boston (1990)

    Google Scholar 

  11. Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces, Graduate Studies in Mathematics, vol. 34. American Mathematical Society, Providence (2001). Corrected reprint of the 1978 original

  12. Horwitz, L.P., Razon, A.: Tensor product of quaternion Hilbert modules. In: Classical and quantum systems (Goslar, 1991), pp. 266–268. World Science Publisher, River Edge (1993)

  13. Huo, Q., Li, Y., Ren, G.: Classification of left octonionic modules. Adv. Appl. Clifford Algebr. 31(1):Paper No. 11 (2021)

  14. Jacobson, N.: Structure of alternative and Jordan bimodules. Osaka Math. J. 6, 1–71 (1954)

    MathSciNet  MATH  Google Scholar 

  15. Lawson Jr. H.B., Michelsohn M.L.: Spin Geometry, Princeton Mathematical Series, vol. 38. Princeton University Press, Princeton (1989)

  16. Ludkovsky, S.V.: Algebras of operators in Banach spaces over the quaternion skew field and the octonion algebra. Sovrem. Mat. Prilozh. 35, 98–162 (2005)

    Google Scholar 

  17. Ludkovsky, S.V., Sprössig, W.: Spectral representations of operators in Hilbert spaces over quaternions and octonions. Complex Var. Elliptic Equ. 57(12), 1301–1324 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Razon, A., Horwitz, L.P.: Uniqueness of the scalar product in the tensor product of quaternion Hilbert modules. J. Math. Phys. 33(9), 3098–3104 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Razon, A., Horwitz, L.P.: Projection operators and states in the tensor product of quaternion Hilbert modules. Acta Appl. Math. 24(2), 179–194 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rembieliński, J.: Tensor product of the octonionic Hilbert spaces and colour confinement. J. Phys. A 11(11), 2323–2331 (1978)

    Article  MathSciNet  Google Scholar 

  21. Rudin, W.: Function theory in the unit ball of \({\mathbb{C}}^n\), Classics in Mathematics. Springer, Berlin (2008). Reprint of the 1980 edition

  22. Salamon, D.A., Walpuski, T.: Notes on the octonions. In: Proceedings of the Gökova Geometry-Topology Conference 2016, pp. 1–85. Gökova Geometry/Topology Conference (GGT), Gökova (2017)

  23. Saworotnow, P.P.: A generalized Hilbert space. Duke Math. J. 35, 191–197 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schafer, R.D.: An Introduction to Nonassociative Algebras. Dover Publications, Inc., New York (1995). Corrected reprint of the 1966 original

  25. Shestakov, I., Trushina, M.: Irreducible bimodules over alternative algebras and superalgebras. Trans. Am. Math. Soc. 368(7), 4657–4684 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Slinko, A.M., Sestakov, I.P.: Right representations of algebras. Algebra i Logika, 13(5):544–588, 605–606 (1974)

  27. Soffer, A., Horwitz, L.P.: \(B^{\ast } \)-algebra representations in a quaternionic Hilbert module. J. Math. Phys. 24(12), 2780–2782 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  28. Viswanath, K.: Normal operations on quaternionic Hilbert spaces. Trans. Am. Math. Soc. 162, 337–350 (1971)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangbin Ren.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the NNSF of China (12171448)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, Q., Ren, G. Para-linearity as the Nonassociative Counterpart of Linearity. J Geom Anal 32, 304 (2022). https://doi.org/10.1007/s12220-022-01037-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-022-01037-4

Keywords

Mathematics Subject Classification

Navigation