Skip to main content
Log in

New Type of Positive Bubble Solutions for a Critical Schrödinger Equation

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper, we investigate the following critical elliptic equation \(-\Delta u+V(y)u=u^{\frac{N+2}{N-2}},\;u>0,\;\text {in}\,{\mathbb {R}}^{N},\;u\in H^{1}({\mathbb {R}}^{N}),\) where V(y) is a bounded non-negative function in \({\mathbb {R}}^{N}.\) Assuming that \(V(y)=V(|\hat{y}|,y^{*}),y=(\hat{y},y^{*})\in {\mathbb {R}}^{4}\times {\mathbb {R}}^{N-4}\) and gluing together bubbles with different concentration rates, we obtain new solutions provided that \(N\ge 7,\) whose concentrating points are close to the point \((r_{0},y^{*}_{0})\) which is a stable critical point of the function \(r^{2}V(r,y^{*})\) satisfying \(r_{0}>0\) and \(V(r_{0},y^{*}_{0})>0.\) In order to construct such new bubble solutions for the above problem, we first prove a non-degenerate result for the positive multi-bubbling solutions constructed in Peng et al. (J Funct Anal 274:2606–2633, 2018) by some local Pohozaev identities, which is of great interest independently. Moreover, we give an example which satisfies the assumptions we impose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bandle, C., Wei, J.: Non-radial clustered spike solutions for semilinear elliptic problems on \(S^{N}.\) J. Anal. Math. 102, 181-208 (2007)

  2. Benci, V., Cerami, G.: Existence of positive solutions of the equation \(-\Delta u+a(x)u=u^{\frac{N+2}{N-2}}\) in \({\mathbb{R} }^{N}\). J. Funct. Anal. 88, 90–117 (1990)

    Article  MathSciNet  Google Scholar 

  3. Brezis, H., Li, Y.: Some nonlinear elliptic equations have only constant solutions. J. Partial Differ. Equ. 19, 208–217 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Brezis, H., Peletier, L.A.: Elliptic equations with critical exponent on spherical caps of \(S^3\). J. Anal. Math. 98, 279–316 (2006)

    Article  MathSciNet  Google Scholar 

  5. Cao, D., Noussair, E.S., Yan, S.: Existence and uniqueness results on single-peaked solutions of a semilinear problem. Ann. Inst. H. Poincare Anal. Non Linear. 15, 71-111 (1998)

  6. Cao, D., Noussair, E.S., Yan, S.: Solutions with multiple peaks for nonlinear elliptic equations. Proc. R. Soc. Edinb. Sect. A. 129, 235–264 (1999)

    Article  MathSciNet  Google Scholar 

  7. Chen, W., Wei, J., Yan, S.: Infinitely many positive solutions for the Schrödinger equations in \({\mathbb{R} }^{N}\) with critical growth. J. Differ. Equ. 252, 2425–2447 (2012)

    Article  Google Scholar 

  8. del Pino, M., Felmer, P.: Multi-peak bound states for nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 15, 127–149 (1998)

    Article  MathSciNet  Google Scholar 

  9. Deng, Y., Lin, C.-S., Yan, S.: On the prescribed scalar curvature problem in \({\mathbb{R} }^N\), local uniqueness and periodicity. J. Math. Pures Appl. 104, 1013–1044 (2015)

    Article  MathSciNet  Google Scholar 

  10. Druet, O.: From one bubble to several bubbles: the low-dimensional case. J. Differ. Geom. 63, 399–473 (2003)

    Article  MathSciNet  Google Scholar 

  11. Druet, O., Hebey, E.: Elliptic equations of Yamabe type. Int. Math. Res. Surv. IMRS 1, 1–113 (2005)

    MathSciNet  MATH  Google Scholar 

  12. Druet, O., Hebey, E.: Stability for strongly coupled critical elliptic systems in a fully inhomogeneous medium. Anal. PDE 2(3), 305–359 (2009)

    Article  MathSciNet  Google Scholar 

  13. Gidas, B., Spruck, J.: Global and local behavior of positive solutions of nonlinear elliptic equations. Commun. Pure Appl. Math. 34, 525–598 (1981)

    Article  MathSciNet  Google Scholar 

  14. Guo, Y., Li, B., Pistoia, A., Yan, Y.: Infinitely many non-radial solutions to a critical equation on annuus. J. Differ. Equ. 265, 4076–4100 (2018)

    Article  Google Scholar 

  15. Guo, Y., Musso, M., Peng, S., Yan, Y.: Non-degeneracy of multi-bubbling solutions for the prescribed scalar curvature equations and applications. J. Funct. Anal. 279, 108553 (2020)

    Article  MathSciNet  Google Scholar 

  16. Guo, Y., Musso, M., Peng, S., Yan, Y.: Non-degeneracy of multi-bump solutions for the prescribed scalar curvature equations and applications. arXiv:2106.15423

  17. Li, Y.Y., Wei, J., Xu, H.: Multi-bump solutions of \(-\Delta u=K(x)u^{\frac{n+2}{n-2}}\) on lattices in \({\mathbb{R}}^n\). J. Reine Angew. Math. 743, 16–211 (2018)

    MATH  Google Scholar 

  18. Lions, P. L.: The concentration-compactness principle in the calculus of variations. The locally compact case. I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 109–145 (1984)

  19. Lions, P. L.: The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 223–283 (1984)

  20. Peng, S., Wang, C., Yan, S.: Construction of solutions via local Pohozaev identities. J. Funct. Anal. 274, 2606–2633 (2018)

    Article  MathSciNet  Google Scholar 

  21. Peng, S., Wang, C., Wei, S.: Constructing solutions for the prescribed scalar curvature problem via local Pohozaev identities. J. Differ. Equ. 267, 2503–2530 (2019)

    Article  MathSciNet  Google Scholar 

  22. Rey, O.: The role of the Green’s function in a nonlinear elliptic problem involving the critical Sobolev exponent. J. Funct. Anal. 89, 1–52 (1990)

    Article  MathSciNet  Google Scholar 

  23. Rey, O.: Boundary effect for an elliptic Neumann problem with critical nonlinearity. Commun. Partial Differ. Equ. 22, 1055–1139 (1997)

    Article  MathSciNet  Google Scholar 

  24. Wei, J., Yan, S.: Infinitely many positive solutions for the nonlinear Schrödinger equations in \({\mathbb{R} }^N\). Calc. Var. Partial Differ. Equ. 37, 423–439 (2010)

    Article  Google Scholar 

  25. Wei, J., Yan, S.: Infinitely many solutions for the prescribed scalar curvature problem on \(S^N\). J. Funct. Anal. 258, 3048–3081 (2010)

    Article  MathSciNet  Google Scholar 

  26. Wei, J., Yan, S.: Infinitely many positive solutions for an elliptic problem with critical or supercritical growth. J. Math. Pures Appl. 96, 307–333 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for the useful comments and suggestions. Q. He was partially supported by the fund from NSF of China (No. 11701107 and No. 11701108) and the NSF of Guangxi Province (Nos. 2017GXNSFBA198190, 2017GXNSFBA198088). C. Wang was partially supported by NSFC (No. 12071169) and the Fundamental Research Funds for the Central Universities (No. KJ02072020-0319). Q. Wang was partially supported by NSFC (No. 11701439).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhua Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Some Pohozaev Identities

Set

$$\begin{aligned} -\Delta u+V(|y'|,y'')u=u^{2^*-1}, \end{aligned}$$
(A.1)

and

$$\begin{aligned} -\Delta \eta +V(|y'|,y'')\eta =(2^*-1)u^{2^*-2}\eta . \end{aligned}$$
(A.2)

Then standard arguments give \(u,\, \eta \in L^\infty ({\mathbb {R}}^N)\) and

$$\begin{aligned} |u(y)|,\;\; |\eta (y)|\le \frac{C}{(1+ |y|)^{N-2}}. \end{aligned}$$
(A.3)

Suppose that \(\Omega \) is a smooth domain in \({\mathbb {R}}^N\).

We have the following identities which are used in Sect. 2 by proving the non-degeneracy of the multi-bubbling solutions obtained in [20].

Lemma A.1

There holds

$$\begin{aligned}&-\int _{\partial \Omega }\frac{\partial u}{\partial \nu }\frac{\partial \eta }{\partial y_i}-\int _{\partial \Omega }\frac{\partial \eta }{\partial \nu }\frac{\partial u}{\partial y_i} +\int _{\partial \Omega }\langle \nabla u,\nabla \eta \rangle \nu _i+\int _{\partial \Omega }Vu\eta \nu _i -\int _{\partial \Omega }u^{2^*-1}\eta \nu _i\\&\quad =\int _{\Omega }\frac{\partial V}{\partial y_i}u\eta , \end{aligned}$$
(A.4)

and

$$\begin{aligned}&\int _{\Omega }u\eta \langle \nabla V,y-x_0\rangle +2\int _{\Omega }V\eta u =-\int _{\partial \Omega }u^{2^*-1}\eta \langle \nu ,y-x_0\rangle -\int _{\partial \Omega }\frac{\partial u}{\partial \nu }\langle \nabla \eta ,y-x_0\rangle \\&\quad -\int _{\partial \Omega }\frac{\partial \eta }{\partial \nu }\langle \nabla u,y-x_0\rangle +\int _{\partial \Omega }\langle \nabla u,\nabla \eta \rangle \langle \nu ,y-x_0\rangle +\int _{\partial \Omega }Vu\eta \langle \nu ,y-x_0\rangle \\&\quad +\frac{2-N}{2}\int _{\partial \Omega }\eta \frac{\partial u}{\partial \nu }+\frac{2-N}{2}\int _{\partial \Omega }u\frac{\partial \eta }{\partial \nu }. \end{aligned}$$
(A.5)

Proof of (A.4)

First we have

$$\begin{aligned} \int _{\Omega }(-\Delta u+Vu)\frac{\partial \eta }{\partial y_i}=\int _{\Omega }u^{2^*-1}\frac{\partial \eta }{\partial y_i}, \end{aligned}$$

and

$$\begin{aligned} \int _{\Omega }(-\Delta \eta +V\eta )\frac{\partial u}{\partial y_i}=\int _{\Omega }(2^*-1)u^{2^*-2}\eta \frac{\partial u}{\partial y_i}, \end{aligned}$$

which implies that

$$\begin{aligned}&\int _{\Omega }\Big (-\Delta u\frac{\partial \eta }{\partial y_i}+(-\Delta \eta )\frac{\partial u}{\partial y_i}+V u\frac{\partial \eta }{\partial y_i}+V\eta \frac{\partial u}{\partial y_i}\Big ) \nonumber \\&\quad =\int _{\Omega }\Big (u^{2^*-1}\frac{\partial \eta }{\partial y_i}+(2^*-1)u^{2^*-2}\eta \frac{\partial u}{\partial y_i}\Big ). \end{aligned}$$
(A.6)

It is easy to check that

$$\begin{aligned} \int _{\Omega }\Big (u^{2^*-1}\frac{\partial \eta }{\partial y_i}+(2^*-1)u^{2^*-2}\eta \frac{\partial u}{\partial y_i}\Big )=\int _{\Omega }\frac{\partial (u^{2^*-1}\eta )}{\partial y_i} =\int _{\partial \Omega }u^{2^*-1}\eta \nu _i. \end{aligned}$$
(A.7)

Moreover, similar to (2.7) in [15], we have

$$\begin{aligned} \int _{\Omega }\Big (-\Delta u\frac{\partial \eta }{\partial y_i}+(-\Delta \eta )\frac{\partial u}{\partial y_i} \Big )=-\int _{\partial \Omega }\frac{\partial u}{\partial \nu }\frac{\partial \eta }{\partial y_i}-\int _{\partial \Omega }\frac{\partial \eta }{\partial \nu }\frac{\partial u}{\partial y_i}+\int _{\partial \Omega }\langle \nabla u,\nabla \eta \rangle \nu _i, \end{aligned}$$
(A.8)

and

$$\begin{aligned} \int _{\Omega }\Big (Vu\frac{\partial \eta }{\partial y_i}+V\eta \frac{\partial u}{\partial y_i}\Big )=\int _{\Omega }V \frac{\partial }{\partial y_i}(u\eta ) =\int _{\partial \Omega }Vu\eta \nu _i-\int _{\Omega }u\eta \frac{\partial V}{\partial y_i}. \end{aligned}$$
(A.9)

It follows from (A.6) to (A.9) that (A.4) holds. \(\square \)

Proof of (A.5)

It is easy to check that

$$\begin{aligned}&\int _{\Omega }\big ((-\Delta u+V u)\langle \nabla \eta ,y-x_0\rangle +(-\Delta \eta +V\eta )\langle \nabla u,y-x_0\rangle \big )\\&\quad =\int _{\Omega }\big (u^{2^*-1}\langle \nabla \eta ,y-x_0\rangle +(2^*-1)u^{2^*-2}\eta \langle \nabla u,y-x_0\rangle \big ). \end{aligned}$$
(A.10)

We find that

$$\begin{aligned}&\int _{\Omega }\big (u^{2^*-1}\langle \nabla \eta ,y-x_0\rangle +(2^*-1)u^{2^*-2}\eta \langle \nabla u,y-x_0\rangle \big )\\&\quad =\int _{\Omega }\langle \nabla (u^{2^*-1}\eta ),y-x_0\rangle =\int _{\partial \Omega }u^{2^*-1}\eta \langle \nu ,y-x_0\rangle -N\int _{\Omega }u^{2^*-1}\eta . \nonumber \\ \end{aligned}$$
(A.11)

Also similar to (2.10) in [15], we have

$$\begin{aligned}&\int _{\Omega }\big (-\Delta u\langle \nabla \eta ,y-x_0\rangle +(-\Delta \eta )\langle \nabla u,y-x_0\rangle \big )\\&\quad =-\int _{\partial \Omega }\frac{\partial u}{\partial \nu }\langle \nabla \eta ,y-x_0\rangle -\int _{\partial \Omega }\frac{\partial \eta }{\partial \nu }\langle \nabla u,y-x_0\rangle \\&\qquad +\int _{\partial \Omega }\langle \nabla u,\nabla \eta \rangle \langle \nu ,y-x_0\rangle +(2-N)\int _{\Omega }\langle \nabla u,\nabla \eta \rangle . \end{aligned}$$
(A.12)

On the other hand, there holds

$$\begin{aligned} 2^*\int _{\Omega }u^{2^*-1}\eta&=\int _{\Omega }\big ((-\Delta u \eta +u(-\Delta \eta )+V u\eta +V\eta u\big )\\&=2\int _{\Omega }\langle \nabla u,\nabla \eta \rangle -\int _{\partial \Omega }\eta \frac{\partial u}{\partial \nu }-\int _{\partial \Omega }u\frac{\partial \eta }{\partial \nu }+2\int _{\Omega }Vu\eta , \end{aligned}$$
(A.13)

which yields

$$\begin{aligned} \int _{\Omega }\langle \nabla u,\nabla \eta \rangle =\frac{2^*}{2}\int _{\Omega }u^{2^*-1}\eta +\frac{1}{2}\int _{\partial \Omega }\eta \frac{\partial u}{\partial \nu }+\frac{1}{2}\int _{\partial \Omega }u\frac{\partial \eta }{\partial \nu }-\int _{\Omega }Vu\eta . \end{aligned}$$
(A.14)

Moreover, we obtain

$$\begin{aligned}&\int _{\Omega }\big (V u\langle \nabla \eta ,y-x_0\rangle +V\eta \langle \nabla u,y-x_0\rangle \big ) =\int _{\Omega }V\langle \nabla (u\eta ),y-x_0\rangle \\&=\int _{\partial \Omega }Vu\eta \langle \nu ,y-x_0\rangle -\int _{\Omega }u\eta \langle \nabla V,y-x_0\rangle -N\int _{\Omega }Vu\eta . \end{aligned}$$
(A.15)

Therefore, from (A.10) to (A.15) we know that (A.5) holds. \(\square \)

Appendix B: The Green’s Functions

In this section, we mainly study the Green’s function of \(L_m\) (see the definition of (2.4)).

For any function g defined in \({\mathbb {R}}^N\), we define its corresponding function \(g^\star \in H_s\) as follows.

First we define \({{\textbf {A}}}_j\) as

$$\begin{aligned} {{\textbf {A}}}_j z= \Bigl ( r \cos \big (\theta +\frac{2j \pi }{m}\big ), r \sin \big (\theta +\frac{2j \pi }{m}\big ), z''\Big ),\quad j=1, \ldots , m, \end{aligned}$$

where \(z= (z', z'')\in {\mathbb {R}}^N\), \(z'= (r\cos \theta , r\sin \theta )\in {\mathbb {R}}^2\), \(z''\in {\mathbb {R}}^{N-2}\), while

$$\begin{aligned} {{\textbf {B}}}_i z ={\left\{ \begin{array}{ll} \bigl ( z_1,\ldots , z_{i-1}, -z_i, z_{i+1},\ldots , z_N),\quad &{} i=2, \\ \bigl ( z_1,\ldots , z_{i-1}, z_i, z_{i+1},\ldots , z_N),\quad &{}i=1,3,4,\cdot \cdot \cdot ,N. \end{array}\right. } \end{aligned}$$

Let

$$\begin{aligned} {\hat{g}}(y)=\frac{1}{m}\sum _{j=1}^m g({{\textbf {A}}}_j y), \end{aligned}$$

and

$$\begin{aligned} g^\star (y) = \frac{1}{(N-1)}\sum _{i=2}^N \frac{1}{2} \bigl ( {\hat{g}} (y)+ {\hat{g}} ({{\textbf {B}}}_i y)\bigr ). \end{aligned}$$

Then \(g^\star \in H_s.\)

Noting that \(\delta _x\) is not in \(H_s,\) we consider

$$\begin{aligned} L_m u = \delta _x^\star , \quad u\in H_s. \end{aligned}$$
(B.1)

The solution of (B.1) is denoted as \(G_m(y, x)\). We want to point out that

$$\begin{aligned} \delta _x^\star =\frac{1}{N-1}\sum _{i=2}^N \frac{1}{2} \Bigl ( \frac{1}{m}\sum _{j=1}^m \delta _{{{\textbf {A}}}_j x}+ \frac{1}{m}\sum _{j=1}^m \delta _{{{\textbf {B}}}_i {{\textbf {A}}}_j x}\Bigr ). \end{aligned}$$

Proposition B.1

Assume that \(V(y)\ge 0\) is bounded in \({\mathbb {R}}^{N}.\) The solution \(G_m(y, x)\) of (B.1) satisfies

$$\begin{aligned} |G_m(y, x)|\le \frac{1}{N-1}\sum _{i=2}^N \frac{1}{2} \Bigg (\frac{1}{m}\sum _{j=1}^m \frac{C}{|y- {{\textbf {A}}}_j x|^{N-2}}+ \frac{1}{m}\sum _{j=1}^m \frac{C}{|y- {{\textbf {B}}}_i {{\textbf {A}}}_j x|^{N-2}}\Bigg ) \end{aligned}$$

for all \(x\in B_R(0)\), where \(R>0\) is any fixed large constant.

Proof

Let \(\omega _1= \frac{C_N}{|y-x|^{N-2}}\), which satisfies \(-\Delta \omega _1= \delta _x\) in \({\mathbb {R}}^N\). Let \(\omega _2\) be the solution of

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta \omega +V(y)\omega = (2^*-1) u_m^{2^*-2} \omega _1,&{} \text {in}\; B_{2R}(0),\\ \omega =0,&{} \text {on}\; \partial B_{2R}(0). \end{array}\right. } \end{aligned}$$

Then \(\omega _2\ge 0\) and

$$\begin{aligned} \omega _2(y)= & {} \int _{B_{2R}(0)}G(z, y) (2^*-1) u_m^{2^*-2} \omega _1\le C \int _{B_R(0)}\frac{1}{|y-z|^{N-2}}\frac{1}{|z-x|^{N-2}}\,\text {d}z\\\le & {} \frac{C}{|y-x|^{N-4}}, \end{aligned}$$

where G(zy) is the Green’s function of the positive operator \(-\Delta +V(y)\) in \(B_{2R}(0)\) with zero boundary condition. We can continue this process to find \(\omega _i\), which is the solution of

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta \omega +V(y)\omega = (2^*-1) u_m^{2^*-2} \omega _{i-1},&{} \text {in}\; B_{2R}(0),\\ \omega =0,&{} \text {on}\; \partial B_{2R}(0), \end{array}\right. } \end{aligned}$$

and satisfies

$$\begin{aligned} \begin{aligned} 0\le \omega _i (y)&= \int _{B_{2R}(0)}G(z, y) (2^*-1) u_m^{2^*-2} \omega _{i-1}\\&\le C \int _{B_{2R}(0)}\frac{1}{|y-z|^{N-2}}\frac{1}{|z-x|^{N-2(i-1)}}\,\text {d}z \le \frac{C}{|y-x|^{N-2i}}. \end{aligned} \end{aligned}$$

Let i be large satisfying \(\omega _i\in L^\infty (B_{2R}(0))\). Define

$$\begin{aligned} \omega =\sum _{l=1}^i \omega _l, \end{aligned}$$

and \(\upsilon = G_m(y, x)- \xi \omega ^\star \), where \(\xi (y)=\xi (|y|)\in C^\infty _0(B_{2R}(0))\), \(\xi =1\) in \(B_{\frac{3}{2} R}(0)\) and \(0\le \xi \le 1\). Then we have

$$\begin{aligned} L_m \upsilon = g, \end{aligned}$$
(B.2)

where \(g\in L^\infty \cap H_s\) and \(g=0\) in \({\mathbb {R}}^N\setminus B_{2R}(0)\). Applying Proposition 2.1, (B.2) has a solution \(\upsilon \in H_s.\)

We still need to prove that \(|\upsilon (y)|\le \frac{C}{|y|^{N-2}}\) as \(|y|\rightarrow +\infty \).

First, we claim that \(|\upsilon |\le C |g|_{L^\infty ({\mathbb {R}}^N)}\). Indeed, assume that there are \(g_n\in L^\infty \cap H_s\), \(\upsilon _n\) satisfying (B.2), with \(|g_{n}|_{L^\infty ({\mathbb {R}}^N)}\rightarrow 0\) and \(|\upsilon _n|_{L^\infty ({\mathbb {R}}^N)}=1\). Then, \(\upsilon _n\rightarrow \upsilon \) in \(C^1_{loc}({\mathbb {R}}^N)\), which satisfies \(L_m \upsilon =0\). Therefore \(\upsilon =0\). On the other hand, we have

$$\begin{aligned} |\upsilon _n(y)| \le C_N \int _{{\mathbb {R}}^N}\frac{1}{|z-y|^{N-2}}\big |(2^*-1) u_m^{2^*-2} \upsilon _n\,\big |\text {d}z+ C_N \nonumber \\ \int _{{\mathbb {R}}^N}\frac{1}{|z-y|^{N-2} } |g_n| \,\text {d}z. \end{aligned}$$
(B.3)

Hence we obtain that \(|\upsilon _n(y)|\le \frac{C}{|y|^2}\) as \(|y|\rightarrow +\infty ,\) which contradicts to \(|\upsilon _n|_{L^\infty ({\mathbb {R}}^N)}=1\).

So \(\upsilon \) is bounded. Then it follows from (B.3) that \(|\upsilon (y)|\le \frac{C}{(1+|y|)^2}\). Also, we have

$$\begin{aligned} |\upsilon (y)|\le C\int _{{\mathbb {R}}^N}\frac{1}{|z-y|^{N-2} } u_m^{2^*-2}\frac{C}{(1+|y|)^2} +\frac{C}{(1+|y|)^{N-2}}\le \frac{C}{(1+|y|)^4}. \end{aligned}$$

Repeating this process, we can prove \(|\upsilon (y)|\le \frac{C}{|y|^{N-2}}\) as \(|y|\rightarrow +\infty .\) \(\square \)

Appendix C: Basic Estimates

For each fixed k and j, \(k\ne j\), we consider the following function

$$\begin{aligned} g_{k,j}(y)=\frac{1}{(1+|y-x_{j}|)^{\alpha }}\frac{1}{(1+|y-x_{k}|)^{\beta }}, \end{aligned}$$
(C.1)

where \(\alpha \ge 1\) and \(\beta \ge 1\) are two constants.

Lemma C.1

([25, Lemma B.1]) For any constants \(0<\delta \le \min \{\alpha ,\beta \}\), there is a constant \(C>0\), such that

$$\begin{aligned} g_{k,j}(y)\le \frac{C}{|x_{k}-x_{j}|^{\delta }}\Big (\frac{1}{(1+|y-x_{k}|)^{\alpha +\beta -\delta }}+\frac{1}{(1+|y-x_{j}|)^{\alpha +\beta -\delta }}\Big ). \end{aligned}$$

Lemma C.2

([25, Lemma B.2]) For any constant \(0<\delta <N-2\), there is a constant \(C>0\), such that

$$\begin{aligned} \int \frac{1}{|y-z|^{N-2}}\frac{1}{(1+|z|)^{2+\delta }}\text {d}z\le \frac{C}{(1+|y|)^{\delta }}. \end{aligned}$$

Let us recall that

$$\begin{aligned} Z_{t,{\tilde{y}}^{*},\mu }(y)=\sum _{j=1}^{n}{\hat{\zeta }}(y) U_{p_{j},\mu }=[N(N-2)]^{\frac{N-2}{4}}\sum _{j=1}^{n} {\hat{\zeta }}(y)\Bigg (\frac{\mu }{1+\mu ^{2}|y-p_{j}|^{2}}\Bigg )^{\frac{N-2}{2}}. \end{aligned}$$

Just by the same argument as that of Lemma B.3 in [20], we can prove

Lemma C.3

Suppose that \(N\ge 5.\) Then there is a small constant \(\iota >0\), such that

$$\begin{aligned} \int \frac{1}{|y-z|^{N-2}}Z^{\frac{4}{N-2}}_{t,{\tilde{y}}^{*},\mu }(z)\sum _{j=1}^{n}\frac{1}{(1+\mu |z-p_{j}|)^{\frac{N-2}{2}+\iota }}\text {d}z \!\le \! \sum _{j=1}^{n}\frac{C}{(1+\mu |y-p_{j}|)^{\frac{N-2}{2}\!+\!\tau +\iota }}. \end{aligned}$$

Appendix D: An Example of the Potential \(V(r,y^{*})\)

Here we give an example of \(V({\hat{y}},y^{*})\) which satisfies the assumptions (V) and \(({\tilde{V}}).\) We define

$$\begin{aligned} V(r,y^*)= \left\{ \begin{array}{ll} r^2-4r\Big (\sum \limits _{j=5}^Ny_j\Big )+\Big (\sum \limits _{j=5}^Ny_j^2\Big )+1,&{}B_\rho (r_0,y_0^*),\\ \ge 0, &{}{\mathbb {R}}^N\backslash B_\rho (r_0,y_0^*), \end{array} \right. \end{aligned}$$

where \(\rho \) is the same as that of [20] and \((r_0,y_0^*)\) is defined below. By some direct computations, we can check that

$$\begin{aligned} f(r,y^*):=r^2V(r,y^*)=r^4-4r^3\Big (\sum \limits _{j=5}^Ny_j\Big )+r^{2}\Big (\sum \limits _{j=5}^Ny_j^2\Big )+r^2. \end{aligned}$$

We have

$$\begin{aligned} \frac{\partial f}{\partial r}=4r^3-12r^2\Big (\sum \limits _{j=5}^Ny_j\Big )+2r\Big (\sum \limits _{j=5}^Ny_j^2\Big )+2r, \end{aligned}$$

and

$$\begin{aligned} \frac{\partial f}{\partial y_i}=-4r^3+2r^2y_i,\quad i=5,\ldots ,N. \end{aligned}$$

Suppose that \(\frac{\partial f}{\partial r}=0,\,\frac{\partial f}{\partial y_i}=0\), we obtain

$$\begin{aligned} y_i=2r,\quad \hbox {for}\; i=5,\ldots ,N, r_0=\sqrt{\frac{1}{8N-34}},\quad y_{0,i}=2\sqrt{\frac{1}{8N-34}}(i=5,...,N). \end{aligned}$$

Therefore, \((r_0,y^{*}_{0})\) is a critical point of the function \(f(r,y^*)\) and \(V(r_0,y^{*}_{0})=\frac{1}{2}>0\). Also

$$\begin{aligned}&\frac{\partial ^2f}{\partial r^2}=12r^2-24r\Big (\sum \limits _{j=5}^Ny_j\Big )+2\Big (\sum \limits _{j=5}^Ny_j^2\Big )+2, \\&\frac{\partial ^2f}{\partial r\partial y_i}=-12r^2+4ry_i,\quad i=5,\ldots ,N, \end{aligned}$$

and

$$\begin{aligned} \frac{\partial ^2f}{\partial y_i^2}=2r^2(i=5,\ldots ,N),\quad \frac{\partial ^2f}{\partial y_i\partial y_j}=0(i,j=5,...,N,i\ne j). \end{aligned}$$

By direct computation, we obtain

$$\begin{aligned} B= \left( \begin{array}{cccc} \frac{\partial ^2f}{\partial r^2}&{}\frac{\partial ^2f}{\partial r\partial y_5}&{}\cdots &{}\frac{\partial ^2f}{\partial r\partial y_N}\\ \frac{\partial ^2f}{\partial r\partial y_5}&{}\frac{\partial ^2f}{\partial y_5\partial y_5}&{}\cdots &{}0\\ \cdots &{}\cdots &{}\cdots &{}\cdots \\ \frac{\partial ^2f}{\partial r\partial y_N}&{}0&{}\cdots &{}\frac{\partial ^2f}{\partial y_N\partial y_N} \end{array} \right) _{(N-3)\times (N-3)}. \end{aligned}$$

Also by some tedious computation, we can obtain the eigenvalues of the matrix B are as follows:

$$\begin{aligned} |\lambda I-B|_{(r_0,y_0^*)}&=\!\Big [\big (\lambda -\frac{\partial ^2f}{\partial r^2}\big )(\lambda -2r^2)\!-\!\sum \limits _{j=5}^N(-12r^2\!+\!4ry_{j})^2\Big ] (\lambda \!-\!2r^2)^{N-5}\Big |_{(r_0,y_0^*)}\nonumber \\&=0, \end{aligned}$$

which implies that

$$\begin{aligned} \Big (\lambda -\frac{\partial ^2f}{\partial r^2}\mid _{(r_0,y_0^*)}\Big )(\lambda -2r_0^2)&=\sum \limits _{j=5}^N(-12r_0^2+4r_0y_{0j})^2,\quad \text {or}\quad (\lambda -2r^2)^{N-5}\Big |_{(r_0,y_0^*)}\nonumber \\&=0. \end{aligned}$$

By further computation, we can check that \(\min \{\lambda _1,\lambda _2\}<0\) and

$$\begin{aligned} \lambda _3=\cdots =\lambda _{N-3}=2r_0^2>0. \end{aligned}$$

Hence the assumption (V) holds.

On the other hand, we recall

$$\begin{aligned} V(r,y)=r^2-4r\Bigg (\sum \limits _{j=5}^Ny_j\Bigg )+\Bigg (\sum \limits _{j=5}^Ny_j^2\Bigg )+1,\quad \text {in}\;B_\rho (r_0,y_0^*). \end{aligned}$$

We obtain in \(B_\rho (r_0,y_0^*)\)

$$\begin{aligned}&\frac{\partial V}{\partial r}=2r-4\sum \limits _{j=5}^Ny_j,\quad \frac{\partial V}{\partial y_i}=2y_i-\frac{4y_i}{r}\Bigg (\sum \limits _{j=5}^Ny_j\Bigg ),i=1,2,3,4, \nonumber \\&\frac{\partial V}{\partial y_k}=-4r+2y_k,\quad k=5,\ldots ,N, \nonumber \\&\frac{\partial ^2V}{\partial r^2}=2,\quad \frac{\partial ^2V}{\partial r\partial y_i}=\frac{2y_{0,i}}{r_{0}}(i=1,2,3,4),\quad \frac{\partial ^2V}{\partial r\partial y_k}=-4(k=5,\ldots ,N), \end{aligned}$$
(D.1)
$$\begin{aligned}&\frac{\partial ^2V}{\partial y_i\partial y_i}=2-\frac{4r^2-4y_i^2}{r^3}\Big (\sum \limits _{j=5}^Ny_j\Big )(i=1,2,3,4), \quad \frac{\partial V}{\partial y_k^2}=2(k=5,\ldots ,N) \end{aligned}$$
(D.2)

and

$$\begin{aligned} \frac{\partial ^2V}{\partial y_k\partial y_j}=0(j\ne k, k,j=5,\ldots ,N). \end{aligned}$$
(D.3)

Then from (D.1) to (D.3), we obtain in \(B_\rho (r_0,y_0^*)\)

$$\begin{aligned} \Delta V&=\sum \limits _{j=1}^N\frac{\partial ^2V}{\partial y_i\partial y_i}=\sum \limits _{i=1}^4\Big (2-\frac{4r^2-4y_i^2}{r^3}(y_5+\cdots +y_N)\Big )+2(N-4)\\&=2N-\frac{12}{r}(y_5+\cdots +y_N). \end{aligned}$$

Hence

$$\begin{aligned} \Delta V\Big |_{(r_{0},y^{*}_{0})}=96-22N. \end{aligned}$$

For \(y_0^*=(y_{0,5},y_{0,6}\ldots ,y_{0,N}),\) one has

$$\begin{aligned}&\frac{\partial \Delta V}{\partial y_1}\Big |_{(r_0,y_0^*)}=\frac{12y_1}{r^3}(y_5+\cdots +y_N)\Big |_{(r_0,y_0^*)}=\frac{24y_{0,1}}{r_0^2}(N-4), \\&\frac{\partial (\Delta V)}{\partial y_k}\Big |_{(r_0,y_0^*)}=-\frac{12}{r_0},k=5,\ldots ,N. \end{aligned}$$

Since \(y_{0,i}=2r_0(i=5,\ldots ,N),\) we obtain

$$\begin{aligned} A_{i,l}= \left\{ \begin{array}{ll} \Big [ 2-(\frac{24y_{0,i}(N-4)}{2r_0^2(96-22N)}+\frac{\nu _1}{\langle \nu ,x_1\rangle })(34-8N)r_0], \text {when}\;i=l=1; \\ -4, \text {when}\;i=1, l=2,3,...,N-3; \\ \cos \frac{2i\pi }{m}(-4-(\frac{-6}{r_0(96-22N)}+\frac{\nu _{i+1}}{\langle \nu ,x_{1}\rangle })(34-8N)r_0),\\ \text {when}\;i=2,3,...,N-3,l=1; \\ 2, \text {when}\;i=l,i,l=2,3,...,N-3, \\ 0, \text {when}\;i\ne l,\,i,l=2,3,...,N-3. \end{array} \right. \end{aligned}$$
(D.4)

Therefore, from (D.4) we have

$$\begin{aligned}&\det (A_{i,l})_{(N-3)\times (N-3)}\\&\quad =\prod _{i=2}^{N-3}A_{i,i}\Bigg (A_{1,1}-\sum _{k=2}^{N-3}\frac{A_{k,1}A_{1,k}}{A_{k,k}}\Bigg )\\&\quad =\prod _{i=2}^{N-3}2 \Bigg ( 2-(\frac{24y_{0,i}(N-4)}{2r_0^2(8-22(N-4))}+\frac{\nu _1}{\langle \nu ,x_1\rangle })(34-8N)r_0\Bigg ) \\&\qquad +\sum _{k=2}^{N-3}2\cos \frac{2i\pi }{m}(-4-(\frac{-6}{r_0(8-22(N-4))}+\frac{\nu _{i+3}}{\langle \nu ,x_{1}\rangle })(34-8N)r_0) \Bigg )\\&\quad \ne 0 . \end{aligned}$$

Hence, the assumption \(({\tilde{V}})\) also holds.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Q., Wang, C. & Wang, Q. New Type of Positive Bubble Solutions for a Critical Schrödinger Equation. J Geom Anal 32, 278 (2022). https://doi.org/10.1007/s12220-022-01015-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-022-01015-w

Keywords

Mathematics Subject Classification

Navigation