Skip to main content
Log in

Local Marked Boundary Rigidity Under Hyperbolic Trapping Assumptions

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Under the assumption that the X-ray transform over symmetric solenoidal 2-tensors is injective, we prove that smooth compact connected manifolds with strictly convex boundary, no conjugate points, and a hyperbolic trapped set are locally marked boundary rigid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. This is an elliptic differential operator with zero kernel and cokernel satisfying the Lopatinskii’s transmission condition (see [22, Theorem 3.3.2]). It can thus be used in order to define the scale of Sobolev spaces.

  2. Indeed, \(\tau \mapsto g_\tau \) depends smoothly on \(\tau \), so \(\xi _\tau := \left( \exp _p^{g_\tau }\right) ^{-1}(q)\) depends smoothly on \(\tau \). Thus \((t,\tau ) \mapsto \varphi _t^{g_\tau }(p,\xi _\tau )\) is smooth in both variables and by the implicit function theorem, the length \(l_+^{g_\tau }(p,\xi _\tau )\) is smooth in \(\tau \). Thus, the reparametrized geodesic \(\gamma _\tau \) depends smoothly on \(\tau \)

References

  1. Besson, G., Courtois, G., Gallot, S.: Entropies et rigidités des espaces localement symétriques de courbure strictement négative. Geom. Funct. Anal. 5(5), 731–799 (1995)

    Article  MathSciNet  Google Scholar 

  2. Burago, D., Ivanov, S.: Boundary rigidity and filling volume minimality of metrics close to a flat one. Ann. Math. (2) 171(2), 1183–1211 (2010)

    Article  MathSciNet  Google Scholar 

  3. Burns, K., Katok, A.: Manifolds with nonpositive curvature. Ergod. Theory Dyn. Syst. 5(2), 307–317 (1985)

    Article  MathSciNet  Google Scholar 

  4. Croke, C.B., Dairbekov, N.S., Sharafutdinov, V.A.: Local boundary rigidity of a compact Riemannian manifold with curvature bounded above. Trans. Am. Math. Soc. 352(9), 3937–3956 (2000)

    Article  MathSciNet  Google Scholar 

  5. Croke, C.B.: Rigidity for surfaces of nonpositive curvature. Comment. Math. Helv. 65(1), 150–169 (1990)

    Article  MathSciNet  Google Scholar 

  6. Croke, C.B.: Rigidity theorems in Riemannian geometry. In: Geometric Methods in Inverse Problems and PDE Control. The IMA Volumes in Mathematics and its Applications, vol. 137, pp. 47–72. Springer, New York (2004)

    Chapter  Google Scholar 

  7. Dyatlov, S., Guillarmou, C.: Pollicott-Ruelle resonances for open systems. Ann. Henri Poincaré 17(11), 3089–3146 (2016)

    Article  MathSciNet  Google Scholar 

  8. Dyatlov, S., Zworski, M.: Mathematical Theory of Resonances. math.mit.edu/ dyatlov/res/, **

  9. Dyatlov, S., Zworski, M.: Dynamical zeta functions for Anosov flows via microlocal analysis. Ann. Sci. Éc. Norm. Supér. (4) 49(3), 543–577 (2016)

    Article  MathSciNet  Google Scholar 

  10. Faure, F., Sjöstrand, J.: Upper bound on the density of Ruelle resonances for Anosov flows. Commun. Math. Phys. 308(2), 325–364 (2011)

    Article  MathSciNet  Google Scholar 

  11. Gérard, P., Golse, F.: Averaging regularity results for PDEs under transversality assumptions. Commun. Pure Appl. Math. 45(1), 1–26 (1992)

    Article  MathSciNet  Google Scholar 

  12. Guillarmou, C., Lefeuvre, T.: The marked length spectrum of Anosov manifolds. ArXiv e-prints (2018)

  13. Guillarmou, C., Mazzucchelli, M.: Marked boundary rigidity for surfaces. Ergod. Theory Dyn. Syst. 38(4), 1459–1478 (2018)

    Article  MathSciNet  Google Scholar 

  14. Gromov, M.: Filling Riemannian manifolds. J. Differ. Geom. 18(1), 1–147 (1983)

    Article  MathSciNet  Google Scholar 

  15. Guillarmou, C.: Invariant distributions and X-ray transform for Anosov flows. J. Differ. Geom. 105(2), 177–208 (2017)

    Article  MathSciNet  Google Scholar 

  16. Guillarmou, C.: Lens rigidity for manifolds with hyperbolic trapped sets. J. Am. Math. Soc. 30(2), 561–599 (2017)

    Article  MathSciNet  Google Scholar 

  17. Lefeuvre, T.: On the s-injectivity of the X-ray transform on manifolds with hyperbolic trapped set. ArXiv e-prints. arXiv:1807.03680 (2018)

  18. Michel, R.: Sur la rigidité imposée par la longueur des géodésiques. Invent. Math. 65(1), 71–83, (1981/1982)

  19. Otal, J.-P.: Le spectre marqué des longueurs des surfaces à courbure négative. Ann. Math. (2) 131(1), 151–162 (1990)

    Article  MathSciNet  Google Scholar 

  20. Pestov, L., Uhlmann, G.: Two dimensional compact simple Riemannian manifolds are boundary distance rigid. Ann. Math. (2) 161(2), 1093–1110 (2005)

    Article  MathSciNet  Google Scholar 

  21. Paternain, G.P., Zhou, H.: Invariant distributions and the geodesic ray transform. Anal. PDE 9(8), 1903–1930 (2016)

    Article  MathSciNet  Google Scholar 

  22. Sharafutdinov, V.A.: Integral geometry of tensor fields. Inverse and Ill-Posed Problems Series. VSP, Utrecht (1994)

  23. Stefanov, P., Uhlmann, G.: Stability estimates for the X-ray transform of tensor fields and boundary rigidity. Duke Math. J. 123(3), 445–467 (2004)

    Article  MathSciNet  Google Scholar 

  24. Stefanov, P., Uhlmann, G.: Local lens rigidity with incomplete data for a class of non-simple Riemannian manifolds. J. Differ. Geom. 82(2), 383–409 (2009)

    Article  MathSciNet  Google Scholar 

  25. Stefanov, P., Uhlmann, G., Vasy, A.: Local and global boundary rigidity and the geodesic X-ray transform in the normal gauge. ArXiv e-prints. arXiv:1702.03638 (2017)

  26. Taylor, M.E.: Partial differential equations I. Basic Theory, 2 edn. Applied Mathematical Sciences, vol. 115. Springer, New York (2011)

    Book  Google Scholar 

Download references

Acknowledgements

We warmly thank Colin Guillarmou for fruitful discussions during the redaction of this paper. We are also grateful to the anonymous referee for helpful comments. This research is partially supported by the ERC IPFLOW project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thibault Lefeuvre.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Throughout this paper, we shall work in the smooth category, that is all the manifolds and coordinate charts are considered to be smooth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lefeuvre, T. Local Marked Boundary Rigidity Under Hyperbolic Trapping Assumptions. J Geom Anal 30, 448–465 (2020). https://doi.org/10.1007/s12220-019-00149-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-019-00149-8

Keywords

Mathematics Subject Classification

Navigation