Skip to main content
Log in

Monotonicity Formulas for the Bakry–Emery Ricci Curvature

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Motivated and inspired by the recent work of Colding (Acta Math 209(2):229–263, 2012) and Colding and Minicozzi (Calc Var Partial Differ Equ 49(3–4):1045–1059, 2014) we derive several families of monotonicity formulas for manifolds with nonnegative Bakry–Emery Ricci curvature, extending the formulas in Colding (2012) and Colding and Minicozzi (2014).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dai, X., Sung, C.-J., Wang, J., Wei, G.: in preparation

  2. Case, J., Shu, Y., Wei, G.: Rigidity of quasi-Einstein metrics. Differ. Geom. Appl. 29(1), 93–100 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chow, B., Chu, S.-C., Glickenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo, F., Ni, L.: The Ricci flow: techniques and applications. Part III. Geometric-analytic aspects. Mathematical Surveys and Monographs, 163. American Mathematical Society, Providence, RI (2010)

  4. Colding, T.H., Minicozzi II, W.P.: Harmonic functions with polynomial growth. J. Diff. Geom. 45, 1–77 (1997)

    MathSciNet  Google Scholar 

  5. Colding, T.H.: New monotonicity formulas for Ricci curvature and applications I. Acta Math. 209(2), 229–263 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Colding, T.H., Minicozzi, W.P.: Ricci curvature and monotonicity for harmonic functions. Calc. Var. Partial Differ. Equ. 49(3–4), 1045–1059 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  7. Colding, T.H., Minicozzi, W.P.: Monotonicity and its analytic and geometric implications. Proc. Natl. Acad. Sci. USA 110(48), 19233–19236 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Colding, T.H., Minicozzi, W.P.: On uniqueness of tangent cones of Einstein manifolds. Invent. Math. 196(3), 515–588 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gilbarg, D., Serrin, J.: On isolated singularities of solutions of second order elliptic differential equations. J. Anal. Math. 4, 309–340 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  10. Li, P., Tam, L.-F.: Symmetric Green’s functions on complete manifolds. Am. J. Math. 109, 1129–1154 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  11. Li, P., Yau, S.-T.: On the parabolic kernel of the Schrödinger operator. Acta Math. 156, 153–201 (1986)

    Article  MathSciNet  Google Scholar 

  12. Li, X.: Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds. J. Math. Pures Appl. (9) 84(10), 1295–1361 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Malgrange, M.: Existence et approximation des solutions des équations aux derivées partielles et des équations de convolution. Ann. Inst. Fourier 6, 271–355 (1955)

    Article  MathSciNet  Google Scholar 

  14. Qian, Z.-M.: Gradient estimates and heat kernel estimate. Proc. R. Soc. Edinb. Sect. A 125(5), 975–990 (1995)

    Article  MATH  Google Scholar 

  15. Qian, Z.-M.: Estimates for weighted volumes and applications. Q. J. Math. Oxf. Ser. (2) 48(190), 235–242 (1997)

    Article  MATH  Google Scholar 

  16. Sung, C.-J.: A note on the existence of positive Green’s functions. J. Funct. Anal. 156, 199–207 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Wei, G., Wylie, W.: Comparison geometry for the smooth metric measure spaces. In: Proceedings of the 4th International Congress of Chinese Mathematicians, Hangzhou, China, Vol. II, pp. 191–202 (2007)

  18. Varopoulos, N.: Potential theory and diffusion on Riemannian manifolds. In: Conference on Harmonic analysis in honor of Antoni Zygmund, Vol. I, II, Chicago, IL (1981)

  19. Wang, L.-F.: Monotonicity formulas via the Bakry–Emery curvature. Nonlinear Anal. 89, 230–241 (2013)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the referee for helpful suggestions, Toby Colding for his interest and encouragement, and Toby Colding and Bill Minicozzi for answering our questions on their work. This work was done while the first and third authors were visiting UCSB. They would like to thank UCSB for hospitality during their stay. The work was partially supported by NSFC Grant No. 11171259 and by NSF Grant # DMS-1105536.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang Wu.

Additional information

Communicated by Jiaping Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, B., Wei, G. & Wu, G. Monotonicity Formulas for the Bakry–Emery Ricci Curvature. J Geom Anal 25, 2716–2735 (2015). https://doi.org/10.1007/s12220-014-9533-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-014-9533-y

Keywords

Mathematics Subject Classification

Navigation