Skip to main content
Log in

Quasi-isospectrality on Quantum Graphs

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Consider two quantum graphs with the standard Laplace operator and non-Robin type boundary conditions at all vertices. We show that if their eigenvalue-spectra agree everywhere aside from a sufficiently sparse set, then the eigenvalue-spectra and the length-spectra of the two quantum graphs are completely identical. Similarly, if their length-spectra agree everywhere aside from a sufficiently sparse set, then the quantum graphs have the same eigenvalue-spectrum and length-spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Band, R., Shapira, T., Smilansky, U.: Nodal domains on isospectral quantum graphs: the resolution of isospectrality? J. Phys. A 39(45), 13999–14014 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Band, R., Parzanchevski, O., Ben-Shach, G.: The isospectral fruits of representation theory: quantum graphs and drums. J. Phys. A 42(17), 175202 (2009)

    Article  MathSciNet  Google Scholar 

  3. Bhagwat, C., Rajan, C.S.: On a spectral analog of the strong multiplicity one theorem. Int. Math. Res. Not. 18, 4059–4073 (2011)

    MathSciNet  Google Scholar 

  4. Bolte, J., Endres, S.: Trace formulae for quantum graphs. In: Analysis on Graphs and Its Applications. Proc. Sympos. Pure Math., vol. 77, pp. 247–259. Am. Math. Soc., Providence (2008)

    Chapter  Google Scholar 

  5. Bolte, J., Endres, S.: The trace formula for quantum graphs with general self adjoint boundary conditions. Ann. Henri Poincaré 10(1), 189–223 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Duistermaat, J.J., Guillemin, V.W.: The spectrum of positive elliptic operators and periodic bicharacteristics. Invent. Math. 29(1), 39–79 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  7. Elstrodt, J., Grunewald, F., Mennicke, J.: Groups Acting on Hyperbolic Space. Springer Monographs in Mathematics. Springer, Berlin (1998). Harmonic analysis and number theory

    Book  MATH  Google Scholar 

  8. Gangolli, R.: The length spectra of some compact manifolds of negative curvature. J. Differ. Geom. 12(3), 403–424 (1977)

    MATH  MathSciNet  Google Scholar 

  9. Gnutzmann, S., Smilansky, U.: Quantum graphs: applications to quantum chaos and universal spectral statistics. Adv. Phys. 55, 527–625 (2006)

    Article  Google Scholar 

  10. Grieser, D.: Monotone unitary families. arXiv:0711.2869 (2007)

  11. Gutkin, B., Smilansky, U.: Can one hear the shape of a graph? J. Phys. A 34(31), 6061–6068 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hörmander, L.: Linear Partial Differential Operators. Springer, Berlin (1976)

    MATH  Google Scholar 

  13. Huber, H.: Zur analytischen Theorie hyperbolischen Raumformen und Bewegungsgruppen. Math. Ann. 138, 1–26 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kelmer, D.: A refinement of strong multiplicity one for spectra of hyperbolic manifolds. arXiv:1108.2977 (2011)

  15. Kostrykin, V., Schrader, R.: Quantum wires with magnetic fluxes. Commun. Math. Phys. 237(1–2), 161–179 (2003). Dedicated to Rudolf Haag, MR 2007178 (2005b:81047)

    MATH  MathSciNet  Google Scholar 

  16. Kostrykin, V., Schrader, R.: Laplacians on metric graphs: eigenvalues, resolvents and semigroups, quantum graphs and their applications. In: Contemp. Math., vol. 415, pp. 201–225. Am. Math. Soc., Providence (2006)

    Google Scholar 

  17. Kostrykin, V., Potthoff, J., Schrader, R.: Heat kernels on metric graphs and a trace formula. In: Adventures in Mathematical Physics. Contemp. Math., vol. 447, pp. 175–198. Am. Math. Soc., Providence (2007)

    Chapter  Google Scholar 

  18. Kottos, T., Smilansky, U.: Periodic orbit theory and spectral statistics for quantum graphs. Ann. Phys. 274(1), 76–124 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Roth, J.-P.: Le spectre du laplacien sur un graphe. In: Théorie du Potentiel, Orsay, 1983. Lecture Notes in Math., vol. 1096, pp. 521–539. Springer, Berlin (1984)

    Chapter  Google Scholar 

  20. von Below, J.: Can one hear the shape of a network? In: Partial Differential Equations on Multistructures, Luminy, 1999. Lecture Notes in Pure and Appl. Math., vol. 219, pp. 19–36. Dekker, New York (2001)

    Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from EPSRC (grant EP/G021287/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Rueckriemen.

Additional information

Communicated by Jiaping Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rueckriemen, R. Quasi-isospectrality on Quantum Graphs. J Geom Anal 25, 306–316 (2015). https://doi.org/10.1007/s12220-013-9428-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-013-9428-3

Keywords

Mathematics Subject Classification (2000)

Navigation