Skip to main content
Log in

Volume Growth, Number of Ends, and the Topology of a Complete Submanifold

  • Original Research
  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Given a complete isometric immersion φ:P mN n in an ambient Riemannian manifold N n with a pole and with radial sectional curvatures bounded from above by the corresponding radial sectional curvatures of a radially symmetric space \(M^{n}_{w}\), we determine a set of conditions on the extrinsic curvatures of P that guarantee that the immersion is proper and that P has finite topology in line with the results reported in Bessa et al. (Commun. Anal. Geom. 15(4):725–732, 2007) and Bessa and Costa (Glasg. Math. J. 51:669–680, 2009). When the ambient manifold is a radially symmetric space, an inequality is shown between the (extrinsic) volume growth of a complete and minimal submanifold and its number of ends, which generalizes the classical inequality stated in Anderson (Preprint IHES, 1984) for complete and minimal submanifolds in ℝn. As a corollary we obtain the corresponding inequality between the (extrinsic) volume growth and the number of ends of a complete and minimal submanifold in hyperbolic space, together with Bernstein-type results for such submanifolds in Euclidean and hyperbolic spaces, in the manner of the work Kasue and Sugahara (Osaka J. Math. 24:679–704, 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson, M.: The compactification of a minimal submanifold by the Gauss map. Preprint IHES (1984)

  2. Bessa, G.P., Jorge, L., Montenegro, J.F.: Complete submanifolds of ℝn with finite topology. Commun. Anal. Geom. 15(4), 725–732 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bessa, G.P., Costa, M.S.: On submanifolds with Tamed second fundamental form. Glasg. Math. J. 51, 669–680 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bianchini, B., Mari, L., Rigoli, M.: Some generalizations of Calabi compactness theorem. Preprint (2011). arXiv:1112.3703v1

  5. Bianchini, B., Mari, L., Rigoli, M.: On some aspects of oscillation theory and geometry. To appear in Mem. Amer. Math. Soc. Preprint

  6. Chavel, I.: Eigenvalues in Riemannian geometry. Pure and Applied Mathematics, vol. 115. Academic Press, Orlando (1984). Including a chapter by Burton Randol, with an appendix by Jozef Dodziuk

    MATH  Google Scholar 

  7. Chen, Q.: On the volume growth and the topology of complete minimal submanifolds of a Euclidean space. J. Math. Sci. Univ. Tokyo 2, 657–669 (1995)

    MATH  MathSciNet  Google Scholar 

  8. do Carmo, M.P.: do Carmo Riemannian Geometry. Birkhäuser, Boston (1992)

    Book  Google Scholar 

  9. Greene, R., Wu, H.: Function theory on manifolds which possess a pole. Lecture Notes in Math., vol. 699. Springer, Berlin (1979)

    MATH  Google Scholar 

  10. Greene, R., Wu, H.: Gap theorems for noncompact Riemannian manifolds. Duke Math. J. 49, 731–756 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  11. Greene, R., Wu, H.: On a new gap phenomenon in Riemannian geometry. Proc. Nat. Acad. Sci. USA 79, 714–715 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  12. Grigor’yan, A.: Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Am. Math. Soc. 36, 135–249 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kasue, A., Sugahara, K.: Gap theorems for certain submanifolds of Euclidean spaces and hyperbolic space forms. Osaka J. Math. 24, 679–704 (1987)

    MATH  MathSciNet  Google Scholar 

  14. Kasue, A.: Gap theorems for minimal submanifolds of Euclidean space. J. Math. Soc. Jpn. 38(3), 473–492 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  15. Markvorsen, S., Palmer, V.: Torsional rigidity of minimal submanifolds. Proc. Lond. Math. Soc. (3) 93, 253–272 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Markvorsen, S., Palmer, V.: The relative volume growth of minimal submanifolds. Arch. Math. 79, 507–514 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Markvorsen, S., Palmer, V.: Generalized isoperimetric inequalities for extrinsic balls in minimal submanifolds. J. Reine Angew. Math. 551, 101–121 (2002)

    MATH  MathSciNet  Google Scholar 

  18. Markvorsen, S., Palmer, V.: On the isoperimetric rigidity of extrinsic minimal balls. Differ. Geom. Appl. 18, 47–54 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Milnor, J.: Morse Theory. Lecture Notes in Math., vol. 699. Springer, Berlin (1979)

    Google Scholar 

  20. De Oliveira, G.: Compactification of minimal submanifolds of hyperbolic space. Commun. Anal. Geom. 1, 1–29 (1993)

    MATH  Google Scholar 

  21. O’Neill, B.: Semi-Riemannian Geometry; With Applications to Relativity. Academic Press, New York (1983)

    MATH  Google Scholar 

  22. Palmer, V.: Isoperimetric inequalities for extrinsic balls in minimal submanifolds and their applications. J. Lond. Math. Soc. (2) 60(2), 607–616 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Palmer, V.: On deciding whether a submanifold is parabolic of hyperbolic using its mean curvature. In: Simon Stevin Transactions on Geometry, vol. 1, pp. 131–159. Simon Stevin Institute for Geometry, Tilburg (2010)

    Google Scholar 

  24. Sakai, T.: Riemannian Geometry. Translations of Mathematical Monographs, vol. 149. AMS, Reading (1996). Addison-Wesley, Reading (1990)

    MATH  Google Scholar 

  25. Schoen, R.: Uniqueness, symmetry and embeddedness of minimal surfaces. J. Differ. Geom. 18, 791–809 (1983)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the referee for his/her useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente Palmer.

Additional information

Communicated by Marco Abate.

Work partially supported by the Caixa Castelló Foundation, and DGI grant MTM2010-21206-C02-02.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gimeno, V., Palmer, V. Volume Growth, Number of Ends, and the Topology of a Complete Submanifold. J Geom Anal 24, 1346–1367 (2014). https://doi.org/10.1007/s12220-012-9376-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-012-9376-3

Keywords

Mathematics Subject Classification (2000)

Navigation