Skip to main content
Log in

Doubly Connected Minimal Surfaces and Extremal Harmonic Mappings

  • Published:
Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

The concept of a conformal deformation has two natural extensions: quasiconformal and harmonic mappings. Both classes do not preserve the conformal type of the domain, however they cannot change it in an arbitrary way. Doubly connected domains are where one first observes nontrivial conformal invariants. Herbert Grötzsch and Johannes C.C. Nitsche addressed this issue for quasiconformal and harmonic mappings, respectively. Combining these concepts we obtain sharp estimates for quasiconformal harmonic mappings between doubly connected domains. We then apply our results to the Cauchy problem for minimal surfaces, also known as the Björling problem. Specifically, we obtain a sharp estimate of the modulus of a doubly connected minimal surface that evolves from its inner boundary with a given initial slope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahlfors, L.V.: Zur Theorie der Überlagerungsflächen. Acta Math. 65(1), 157–194 (1935)

    Article  MathSciNet  Google Scholar 

  2. Astala, K., Iwaniec, T., Martin, G.J.: Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane. Princeton University Press, Princeton (2009)

    MATH  Google Scholar 

  3. Astala, K., Iwaniec, T., Martin, G.J.: Deformations of annuli with smallest mean distortion. Arch. Ration. Mech. Anal. 195(3), 899–921 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bailyn, P.M.: Doubly-connected minimal surfaces. Trans. Am. Math. Soc. 128, 206–220 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  5. Björling, E.G.: In integrationem aequationis derivatarum partialum superfici, cujus in puncto unoquoque principales ambo radii curvedinis aequales sunt sngoque contrario. Arch. Math. Phys. 4(1), 290–315 (1844)

    Google Scholar 

  6. Burckel, R.B., Poggi-Corradini, P.: Some Remarks About Analytic Functions Defined on an Annulus (unpublished)

  7. Colding, T.H., Minicozzi, W.P. II: Minimal annuli with and without slits. J. Symplectic Geom. 1(1), 47–61 (2001)

    MathSciNet  MATH  Google Scholar 

  8. Colding, T.H., Minicozzi, W.P. II: On the structure of embedded minimal annuli. Int. Math. Res. Not. 29, 1539–1552 (2002)

    Article  MathSciNet  Google Scholar 

  9. Dierkes, U., Hildebrandt, S., Küster, A., Wohlrab, O.: Minimal Surfaces. I. Boundary Value Problems. Grundlehren der Mathematischen Wissenschaften, vol. 295. Springer, Berlin (1992) [Fundamental Principles of Mathematical Sciences]

    MATH  Google Scholar 

  10. Duren, P.: Harmonic Mappings in the Plane. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  11. Fang, Y.: On minimal annuli in a slab. Comment. Math. Helv. 69(3), 417–430 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gálvez, J.A., Mira, P.: Dense solutions to the Cauchy problem for minimal surfaces. Bull. Braz. Math. Soc. 35(3), 387–394 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Grötzsch, H.: Über die Verzerrung bei schlichten nichtkonformen Abbildungen und über einedamit zusammenhängende Erweiterung des Picardschen Satzes. Ber. Verh. Sächs. Akad. Wiss. Leipz. 80, 503–507 (1928)

    Google Scholar 

  14. Hadamard, J.: Sur les problèmes aux derivées partielles et leur signification physique. Bull. Univ. Princet. 13, 49–52 (1902)

    MathSciNet  Google Scholar 

  15. Hadamard, J.: Lectures on Cauchy’s Problem in Linear Partial Differential Equations. Yale University Press, New Haven (1923)

    MATH  Google Scholar 

  16. Iwaniec, T., Kovalev, L.V., Onninen, J.: Harmonic mappings of an annulus, Nitsche conjecture and its generalizations. Am. J. Math. 132(5), 1397–1428 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Iwaniec, T., Onninen, J.: n-Harmonic Mappings Between Annuli. Mem. Am. Math. Soc. (to appear)

  18. Iwaniec, T., Kovalev, L.V., Onninen, J.: The Nitsche conjecture. J. Am. Math. Soc. 24(2), 345–373 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kalaj, D.: On the Nitsche conjecture for harmonic mappings in ℝ2 and ℝ3. Isr. J. Math. 150, 241–251 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kalaj, D.: Deformations of Annuli on Riemann Surfaces with Smallest Mean Distortion. Preprint. arXiv:1005.5269

  21. Kaul, H.: Remarks on the isoperimetric inequality for multiply-connected H-surfaces. Math. Z. 128, 271–276 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lavrentiev, M.M.: On the Cauchy problem for Laplace equation. Izv. Akad. Nauk SSSR, Ser. Mat. 20, 819–842 (1956)

    MathSciNet  Google Scholar 

  23. Lavrentiev, M.M.: O Nekotorykh Nekorrektnykh Zadachakh Matematicheskoi Fiziki. Izdat. Sibirsk. Otdel. Akad. Nauk SSSR, Novosibirsk (1962)

    Google Scholar 

  24. Lavrentiev, M.M.: Some Improperly Posed Problems of Mathematical Physics. Springer Tracts in Natural Philosophy, vol. 11. Springer, Berlin (1967)

    Book  MATH  Google Scholar 

  25. Lavrentiev, M.M., Romanov, V.G., Shishatski, S.P.: Ill-Posed Problems of Mathematical Physics and Analysis. Translations of Mathematical Monographs, vol. 64. Am. Math. Society, Providence (1986)

    Google Scholar 

  26. Lyzzaik, A.: Univalent harmonic mappings and a conjecture of J.C.C. Nitsche, XIIth conference on analytic functions (Lublin, 1998). Ann. Univ. Mariae Curie-Skl̄odowska, Sect. A 53, 147–150 (1999)

    MathSciNet  MATH  Google Scholar 

  27. Lyzzaik, A.: The modulus of the image annuli under univalent harmonic mappings and a conjecture of J.C.C. Nitsche. J. Lond. Math. Soc. 64, 369–384 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Meeks, W.H. III, Weber, M.: Bending the helicoid. Math. Ann. 339(4), 783–798 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Meeks, W.H. III, White, B.: Minimal surfaces bounded by convex curves in parallel planes. Comment. Math. Helv. 66(2), 263–278 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mira, P.: Complete minimal Möbius strips in ℝn and the Björling problem. J. Geom. Phys. 56(9), 1506–1515 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nitsche, J.C.C.: On the module of doubly-connected regions under harmonic mappings. Am. Math. Mon. 69(8), 781–782 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  32. Nitsche, J.C.C.: A necessary criterion for the existence of certain minimal surfaces. J. Math. Mech. 13, 659–666 (1964)

    MathSciNet  MATH  Google Scholar 

  33. Nitsche, J.C.C.: The isoperimetric inequality for multiply-connected minimal surfaces. Math. Ann. 160, 370–375 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  34. Nitsche, J.C.C.: Vorlesungen über Minimalflächen. Springer, Berlin (1975)

    MATH  Google Scholar 

  35. Osserman, R.: A Survey of Minimal Surfaces. Reinhold, New York (1969)

    MATH  Google Scholar 

  36. Osserman, R., Schiffer, M.: Doubly-connected minimal surfaces. Arch. Ration. Mech. Anal. 58(4), 285–307 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pliś, A.: On non-uniqueness in Cauchy problem for an elliptic second order differential equation. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 11, 95–100 (1963)

    MATH  Google Scholar 

  38. Schober, G.: Planar Harmonic Mappings, Computational Methods and Function Theory. Lecture Notes in Math., vol. 1435, pp. 171–176. Springer, Berlin (1990)

    Google Scholar 

  39. Schottky, F.H.: Über konforme Abbildung von mehrfach zusammenhängenden Fläche. J. Math. 83 (1877)

  40. Weitsman, A.: Univalent harmonic mappings of annuli and a conjecture of J.C.C. Nitsche. Isr. J. Math. 124, 327–331 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid V. Kovalev.

Additional information

Communicated by Michael Wolf.

T. Iwaniec was supported by the NSF grant DMS-0800416 and Academy of Finland grant 1128331. L.V. Kovalev was supported by the NSF grant DMS-0913474. J. Onninen was supported by the NSF grant DMS-0701059.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwaniec, T., Kovalev, L.V. & Onninen, J. Doubly Connected Minimal Surfaces and Extremal Harmonic Mappings. J Geom Anal 22, 726–762 (2012). https://doi.org/10.1007/s12220-010-9212-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-010-9212-6

Keywords

Mathematics Subject Classification (2000)

Navigation