Skip to main content
Log in

A Simple Proof of Perelman’s Collapsing Theorem for 3-manifolds

  • Published:
Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We will simplify earlier proofs of Perelman’s collapsing theorem for 3-manifolds given by Shioya–Yamaguchi (J. Differ. Geom. 56:1–66, 2000; Math. Ann. 333: 131–155, 2005) and Morgan–Tian (arXiv:0809.4040v1 [math.DG], 2008). A version of Perelman’s collapsing theorem states: “Let \(\{M^{3}_{i}\}\) be a sequence of compact Riemannian 3-manifolds with curvature bounded from below by (−1) and \(\mathrm{diam}(M^{3}_{i})\ge c_{0}>0\) . Suppose that all unit metric balls in \(M^{3}_{i}\) have very small volume, at most v i →0 as i→∞, and suppose that either \(M^{3}_{i}\) is closed or has possibly convex incompressible toral boundary. Then \(M^{3}_{i}\) must be a graph manifold for sufficiently large i”. This result can be viewed as an extension of the implicit function theorem. Among other things, we apply Perelman’s critical point theory (i.e., multiple conic singularity theory and his fibration theory) to Alexandrov spaces to construct the desired local Seifert fibration structure on collapsed 3-manifolds.

The verification of Perelman’s collapsing theorem is the last step of Perelman’s proof of Thurston’s geometrization conjecture on the classification of 3-manifolds. A version of the geometrization conjecture asserts that any closed 3-manifold admits a piecewise locally homogeneous metric. Our proof of Perelman’s collapsing theorem is accessible to advanced graduate students and non-experts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bessières, L., Besson, G., Boileau, M., Maillot, S., Porti, J.: Collapsing irreducible 3-manifolds with nontrivial fundamental group. Invent. Math. 179, 434–460 (2010)

    Article  Google Scholar 

  2. Burago, D., Burago, Y., Ivanov, S.: A Course Metric Geometry. Graduate Studies in Mathematics, vol. 33. American Mathematical Society, Providence (2001). ISBN: 0-8218-2129-6, xiv+415 pp.

    MATH  Google Scholar 

  3. Burago, Y., Gromov, M., Perelman, G.: A.D. Aleksandrov spaces with curvatures bounded below. Usp. Mat. Nauk 47(2(284)), 3–51 (1992). Translation in Russian Math. Surv. 47(2), 1–58 (1992) (Russian)

    MathSciNet  Google Scholar 

  4. Calabi, E., Cao, J.: Simple closed geodesics on convex surfaces. J. Differ. Geom. 36, 517–549 (1992)

    MathSciNet  MATH  Google Scholar 

  5. Cao, H., Zhu, X.: A complete proof of the Poincaré and geometrization conjectures—application of the Hamilton–Perelman theory of the Ricci flow. Asian J. Math. 10(2), 165–492 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Cao, J., Cheeger, J., Rong, X.: Splittings and Cr-structures for manifolds with nonpositive sectional curvature. Invent. Math. 144(1), 139–167 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cao, J., Cheeger, J., Rong, X.: Local splitting structures on nonpositively curved manifolds and semirigidity in dimension 3. Commun. Anal. Geom. 12(1–2), 389–415 (2004)

    MathSciNet  MATH  Google Scholar 

  8. Cao, J., Dai, B., Mei, J.: An optimal extension of Perelman’s comparison theorem for quadrangles and its applications. In: Lee, Y., Lin, C.-S., Tsui, M.-P. (eds.) Recent Advances in Geometric Analysis. Advanced Lectures in Mathematics, vol. 11, pp. 39–59. Higher Educational Press and International Press (2009). ISBN: 978-7-04-027602-2, 229 pp.

  9. Cheeger, J., Gromoll, D.: On the structure of complete manifolds of nonnegative curvature. Ann. Math. 96, 413–443 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cheeger, J., Gromov, M.: Collapsing Riemannian manifolds while keeping their curvature bounded. I. J. Differ. Geom. 23(3), 309–346 (1986)

    MathSciNet  MATH  Google Scholar 

  11. Cheeger, J., Gromov, M.: Collapsing Riemannian manifolds while keeping their curvature bounded. II. J. Differ. Geom. 32, 269–298 (1990)

    MathSciNet  MATH  Google Scholar 

  12. Colding, T., Minicozzi, W. II: Estimates for the extinction time for the Ricci flow on certain 3-manifolds and a question of Perelman. J. Am. Math. Soc. 18(3), 561–569 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Colding, T., Minicozzi, W. II: Width and mean curvature flow. Geom. Topol. 12(5), 2517–2535 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Colding, T., Minicozzi, W. II: Width and finite extinction time of Ricci flow. Geom. Topol. 12(5), 2537–2586 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gromov, M.: Curvature, diameter and Betti numbers. Comment. Math. Helv. 56(2), 179–195 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grove, K.: Critical point theory for distance functions. Differential geometry. In: Riemannian Geometry, Los Angeles, CA, 1990. Proc. Sympos. Pure Math., vol. 54, pp. 357–385. Am. Math. Soc., Providence (1993). Part 3

    Google Scholar 

  17. Grove, K., Shiohama, K.: A generalized sphere theorem. Ann. Math. 106, 201–211 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grove, K., Wilhelm, F.: Metric constraints on exotic spheres via Alexandrov geometry. J. Reine Angew. Math. 487, 201–217 (1997)

    MathSciNet  MATH  Google Scholar 

  19. Hamilton, R.S.: Four-manifolds with positive curvature operator. J. Differ. Geom. 24(2), 153–179 (1986)

    MathSciNet  MATH  Google Scholar 

  20. Hamilton, R.S.: Non-singular solutions of the Ricci flow on three-manifolds. Commun. Anal. Geom. 7(4), 695–729 (1999)

    MathSciNet  MATH  Google Scholar 

  21. Kapovitch, V.: Regularity of limits of noncollapsing sequences of manifolds. Geom. Funct. Anal. 12(1), 121–137 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kapovitch, V.: Restrictions on collapsing with a lower sectional curvature bound. Math. Z. 249(3), 519–539 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kapovitch, V.: Perelman’s Stability Theorem. In: Surveys in Differential Geometry, volume 11, pp. 103–136. International Press, Somerville (2007). ISBN: 978-1-57146-117-9, xii+347 pp.

    Google Scholar 

  24. Kapovitch, V., Petrunin, A., Tuschmann, W.: Nilpotency, almost nonnegative curvature and gradient flow on Alexandrov spaces. Ann. Math. (to appear). arXiv:math/0506273v4 [math.DG]

  25. Kleiner, B., Lott, J.: Notes on Perelman’s papers. Geom. Topol. 12, 2587–2855 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kleiner, B., Lott, J.: Locally collapsed 3-manifolds (in preparation). arXiv:1005.5106v1

  27. Morgan, J., Tian, G.: Ricci Flow and the Poincaré Conjecture. Clay Mathematics Monographs, vol. 3. Am. Math. Soc., Providence (2007), 521 pp.

    MATH  Google Scholar 

  28. Morgan, J., Tian, G.: Completion of the proof of the geometrization conjecture. arXiv:0809.4040v1 [math.DG]

  29. Morgan, J., Tian, G.: Ricci flow and the geometrization conjecture (in preparation)

  30. Perelman, G., A.D. Alexandrov’s spaces with curvatures bounded from below. II. Preprint

  31. Perelman, G.: Elements of Morse theory on Aleksandrov spaces. Algebra Anal. 5(1), 232–241 (1993) Translation in St. Petersburg Math. J. 5(1), 205–213 (1994). (Russian. Russian summary)

    MathSciNet  Google Scholar 

  32. Perelman, G.: Collapsing with no proper extremal subsets. In: Comparison Geometry, Berkeley, CA, 1993–1994. Math. Sci. Res. Inst. Publ., vol. 30, pp. 149–155. Cambridge Univ. Press, Cambridge (1997)

    Google Scholar 

  33. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv:math/0211159v1 [math.DG]

  34. Perelman, G.: Ricci flow with surgery on three-manifolds. arXiv:math/0303109v1 [math.DG]

  35. Perelman, G.: Finite extinction time for the solutions to the Ricci flow on certain three-manifolds. arXiv:math/0307245v1 [math.DG]

  36. Perelman, G., Petrunin, A.: Extremal subsets in Aleksandrov spaces and the generalized Liberman theorem. Algebra Anal. 5(1), 242–256 (1993). Translation in St. Petersburg Math. J. 5(1), 215–227 (1994)

    MathSciNet  Google Scholar 

  37. Petrunin, A.: Semiconcave functions in Alexandrov’s geometry. In: Surveys in Differential Geometry. Surv. Differ. Geom. vol. 11, pp. 137–201. International Press, Somerville (2007). ISBN: 978-1-57146-117-9, xii+347 pp.

    Google Scholar 

  38. Rong, X.: The limiting eta invariants of collapsed three-manifolds. J. Differ. Geom. 37(3), 535–568 (1993)

    MathSciNet  MATH  Google Scholar 

  39. Shen, Z.: Complete manifolds with nonnegative Ricci curvature and large volume growth. Invent. Math. 125(3), 393–404 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  40. Shioya, T.: Mass of rays in Alexandrov spaces of nonnegative curvature. Comment. Math. Helv. 69(2), 208–228 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  41. Shioya, T., Yamaguchi, T.: Collasping three-manifolds under a lower curvature bound. J. Differ. Geom. 56, 1–66 (2000)

    MathSciNet  MATH  Google Scholar 

  42. Shioya, T., Yamaguchi, T.: Volume collapsed three-manifolds with a lower curvature bound. Math. Ann. 333, 131–155 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wu, H.: An elementary method in the study of non-negative curvature. Acta Math. 142, 57–78 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yamaguchi, T.: Collapsing and essential covering. Preprint (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Cao.

Additional information

Communicated by Jiaping Wang.

In this version, we improve the exposition of our arguments in the earlier arXiv version. Among other things, we highlight the use of Perelman’s version of critical point theory for distance functions. The first author was supported in part by Nanjing University and an NSF grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, J., Ge, J. A Simple Proof of Perelman’s Collapsing Theorem for 3-manifolds. J Geom Anal 21, 807–869 (2011). https://doi.org/10.1007/s12220-010-9169-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-010-9169-5

Keywords

Mathematics Subject Classification (2000)

Navigation