Skip to main content
Log in

Non-singular Solutions of Normalized Ricci Flow on Noncompact Manifolds of Finite Volume

  • Published:
Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

The main result of this paper shows that if g(t) is a complete non-singular solution of the normalized Ricci flow on a noncompact 4-manifold M of finite volume, then the Euler characteristic number χ(M)≥0. Moreover, if χ(M)≠0, there exists a sequence of times t k →∞, a double sequence of points \(\{p_{k,l}\}_{l=1}^{N}\) and domains \(\{U_{k,l}\}_{l=1}^{N}\) with p k,lU k,l satisfying the following:

  1. (i)

    \(\mathrm{dist}_{g(t_{k})}(p_{k,l_{1}},p_{k,l_{2}})\rightarrow\infty\) as k→∞, for any fixed l1l2;

  2. (ii)

    for each l, (U k,l,g(t k ),p k,l) converges in the \(C_{\mathrm{loc}}^{\infty}\) sense to a complete negative Einstein manifold (M ∞,l ,g ∞,l ,p ∞,l ) when k→∞;

  3. (iii)

    \(\operatorname {Vol}_{g(t_{k})}(M\backslash\bigcup_{l=1}^{N}U_{k,l})\rightarrow0\) as k→∞.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Atiyah, M.F., Patodi, V.K., Singer, I.M.: Spectral asymmetry and Riemannian geometry, I. Math. Proc. Camb. Philos. Soc. 77, 43–69 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  2. Biquard, O.: Métriques d’Einstein à cusps et équations de Seiberg-Witten. J. Reine Angew. Math. 490, 129–154 (1997)

    MATH  MathSciNet  Google Scholar 

  3. Carrillo, J.A., Ni, L.: Sharp logarithmic Sobolev inequalities on gradient solitons and applications. arXiv:0806.2417v2 [math.DG]

  4. Cheeger, J., Gromov, M.: Collapsing Riemannian manifolds while keeping their curvature bounded I. J. Differ. Geom. 23, 309–364 (1986)

    MATH  MathSciNet  Google Scholar 

  5. Cheeger, J., Gromov, M., Taylor, M.: Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds. J. Differ. Geom. 17, 15–53 (1982)

    MATH  MathSciNet  Google Scholar 

  6. Chow, B., Lu, P., Ni, L.: Hamilton’s Ricci Flow. Lectures in Contemporary Mathematics. Science Press/AMS, Beijing/Providence (2005)

    Google Scholar 

  7. Dai, X.Z., Wei, G.F.: Hitchin-Thorpe inequality for noncompact Einstein 4-manifolds. Adv. Math. 214, 551–570 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fang, F.Q., Zhang, Y.G., Zhang, Z.Z.: Non-singular solutions to the normalized Ricci flow equations. Math. Ann. 340, 647–674 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fang, F.Q., Zhang, Y.G., Zhang, Z.Z.: Maximum solutions of normalized Ricci flow on 4-manifolds. Commun. Math. Phys. 283(1), 1–24 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hamilton, R.S.: The Formation of Singularities in the Ricci Flow. Surveys in Differential Geometry, vol. 2. International Press, Somerville (1995)

    Google Scholar 

  11. Hamilton, R.S.: A compactness property for solutions of the Ricci flow. Am. J. Math. 117, 545–572 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hamilton, R.S.: Non-singular solutions of the Ricci flow on three-manifolds. Commun. Anal. Geom. 7, 695–729 (1999)

    MATH  MathSciNet  Google Scholar 

  13. Ishida, M.: The normalized Ricci flow on four-manifolds and exotic smooth structures. arXiv:0807.2169v1 [math.DG]

  14. Kleiner, B., Lott, J.: Notes on Perelman’s papers. Geom. Topol. 12, 2587 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Naber, A.: Noncompact shrinking 4-solitons with nonnegative curvature. arXiv:0710.5579v1 [math.DG]

  16. Ni, L., Tam, L.-F.: Kähler-Ricci flow and the Poincaré-Lelong equation. Commun. Anal. Geom. 12, 111–141 (2004)

    MATH  MathSciNet  Google Scholar 

  17. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv:math.DG/0211159

  18. Schoen, R., Yau, S.T.: Lectures on Differential Geometry. International Press, Somerville (1994)

    MATH  Google Scholar 

  19. Shi, W.X.: Ricci deformation of the metric on complete noncompact Riemannian manifolds. J. Differ. Geom. 30, 303–394 (1989)

    MATH  Google Scholar 

  20. Zhang, W.P.: Lectures on Chern-Weil Theory and Witten Deformations. Nankai Tracts in Mathematics, vol. 4. World Scientific, Singapore (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuquan Fang.

Additional information

Communicated by Claude LeBrun.

The authors were supported by a NSF Grant of China and the Capital Normal University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, F., Zhang, Z. & Zhang, Y. Non-singular Solutions of Normalized Ricci Flow on Noncompact Manifolds of Finite Volume. J Geom Anal 20, 592–608 (2010). https://doi.org/10.1007/s12220-010-9120-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-010-9120-9

Keywords

Mathematics Subject Classification (2000)

Navigation