Skip to main content
Log in

Classical Symmetries of Complex Manifolds

  • Published:
Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We consider complex manifolds that admit actions by holomorphic transformations of classical simple real Lie groups and classify all such manifolds in a natural situation. Under our assumptions, which require the group at hand to be dimension-theoretically large with respect to the manifold on which it is acting, our classification result states that the manifolds which arise are described precisely as invariant open subsets of certain complex flag manifolds associated to the complexified groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altomani, A., Medori, C., Nacinovich, M.: Orbits of real groups in complex flag manifolds. Preprint, available from http://front.math.ucdavis.edu/0711.4484

  2. Barut, A., Bracken, A.: The remarkable algebra \({\mathfrak{so}}^{*}(2n)\) , its representations, its Clifford algebra and potential applications. J. Phys. A Math. Gen. 23, 641–663 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  3. Byun, J., Kodama, A., Shimizu, S.: A group-theoretic characterization of the direct product of a ball and a Euclidean space. Forum Math. 18, 983–1009 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Darmstadt, S.: On complex Lie algebras with a simple real form. Semin. Sophus Lie 1, 243–245 (1991). Seminar Sophus Lie (Darmstadt, 1991)

    MATH  MathSciNet  Google Scholar 

  5. Djoković, D.: On real forms of complex semisimple Lie algebras. Aeq. Math. 58, 73–84 (1999)

    Article  MATH  Google Scholar 

  6. Fels, G., Huckleberry, A., Wolf, J.: Cycle Spaces of Flag Domains. A Complex Geometric Viewpoint. Progress in Mathematics, vol. 245. Birkhäuser, Basel (2006)

    MATH  Google Scholar 

  7. Helgason, S.: Differential Geometry and Symmetric Spaces. Academic Press, San Diego (1962)

    MATH  Google Scholar 

  8. Hochschild, G.: Complexification of real analytic groups. Trans. Am. Math. Soc. 125, 406–413 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  9. Huckleberry, A.T.: Actions of groups of holomorphic transformations. In: Several Complex Variables, VI. Encyclopedia Math. Sci., vol. 69, pp. 143–196. Springer, Berlin (1990)

    Google Scholar 

  10. Huckleberry, A.T., Isaev, A.V.: Classical symmetries of complex manifolds. Preprint, available from http://arxiv.org/abs/0901.4280

  11. Huckleberry, A., Oeljeklaus, E.: Classification Theorems for Almost Homogeneous Spaces. Revue de l’Institut Elie Cartan, vol. 9. University of Nancy, Nancy (1984)

    MATH  Google Scholar 

  12. Isaev, A.V.: Characterization of the unit ball in ℂn among complex manifolds of dimension n. J. Geom. Anal. 14, 697–700 (2004). Erratum: J. Geom. Anal. 18, 919 (2008)

    MATH  MathSciNet  Google Scholar 

  13. Isaev, A.V.: Hyperbolic manifolds of dimension n with automorphism group of dimension n 2−1. J. Geom. Anal. 15, 239–259 (2005)

    MATH  MathSciNet  Google Scholar 

  14. Isaev, A.V.: Hyperbolic manifolds with high-dimensional automorphism group. Proc. Steklov Inst. Math. 253, 225–245 (2006). Collected Papers in the Memory of A.G. Vitushkin

    Article  MathSciNet  Google Scholar 

  15. Isaev, A.V.: Lectures on the Automorphism Groups of Kobayashi-Hyperbolic Manifolds. Lecture Notes in Mathematics, vol. 1902. Springer, Berlin (2007)

    MATH  Google Scholar 

  16. Isaev, A.V.: Hyperbolic 2-dimensional manifolds with 3-dimensional automorphism group. Geom. Topol. 12, 643–711 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Isaev, A.V., Kruzhilin, N.G.: Effective actions of the unitary group on complex manifolds. Can. J. Math. 54, 1254–1279 (2002)

    MATH  MathSciNet  Google Scholar 

  18. Isaev, A.V., Kruzhilin, N.G.: Effective actions of SU n on complex n-dimensional manifolds. Ill. J. Math. 48, 37–57 (2004)

    MATH  MathSciNet  Google Scholar 

  19. Onishchik, A.L.: Topology of Transitive Transformation Groups. Barth, Leipzig (1994)

    MATH  Google Scholar 

  20. Onishchik, A., Vinberg, E.: Lie Groups and Algebraic Groups. Springer, Berlin (1990)

    MATH  Google Scholar 

  21. Snow, D., Winkelmann, J.: Compact complex homogeneous manifolds with large automorphism groups. Invent. Math. 134, 139–144 (1998)

    Article  MathSciNet  Google Scholar 

  22. Stuck, G.: Low dimensional actions of semisimple groups. Isr. J. Math. 76, 27–71 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  23. Tomuro, T.: Smooth SL(n,ℍ), Sp(n,ℂ)-actions on (4n−1)-manifolds. Tohôku Math. J. 44(2), 243–250 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  24. Uchida, F.: Smooth actions of special unitary groups on cohomology complex projective spaces. Osaka J. Math. 12, 375–400 (1975)

    MATH  MathSciNet  Google Scholar 

  25. Uchida, F.: Smooth SL(n,ℂ) actions on (2n−1)-manifolds. Hokkaido Math. J. 21, 79–86 (1992)

    MATH  MathSciNet  Google Scholar 

  26. Uchida, F., Mukōyama, K.: Smooth actions of non-compact semi-simple Lie groups. In: Current Trends in Transformation Groups. K-Monographs in Mathematics, vol. 7, pp. 201–215. Kluwer Academic, Dordrecht (2002)

    Google Scholar 

  27. Winkelmann, J.: The Classification of Three-Dimensional Homogeneous Complex Manifolds. Lecture Notes in Mathematics, vol. 1602. Springer, Berlin (1995)

    Google Scholar 

  28. Wolf, J.: The action of a real semisimple group on a complex flag manifold. I. Orbit structure and holomorphic arc components. Bull. Am. Math. Soc. 75, 1121–1237 (1969)

    Article  MATH  Google Scholar 

  29. Wolf, J.: Real groups transitive on complex flag manifolds. Proc. Am. math. Soc. 129, 2483–2487 (2001)

    Article  MATH  Google Scholar 

  30. Zierau, R.: Representations in Dolbeault cohomology. In: Representation Theory of Lie Groups. IAS/Park City Mathematics Series, vol. 8, pp. 89–146. Am. Math. Soc., Providence (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Isaev.

Additional information

Communicated by Kang-Tae Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huckleberry, A., Isaev, A. Classical Symmetries of Complex Manifolds. J Geom Anal 20, 132–152 (2010). https://doi.org/10.1007/s12220-009-9095-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-009-9095-6

Keywords

Mathematics Subject Classification (2000)

Navigation