Skip to main content
Log in

The Heat Kernel and Green Functions of Sub-Laplacians on the Quaternion Heisenberg Group

  • Published:
Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We introduce the quaternion Heisenberg group and show that it is a special case of the model step two nilpotent Lie group studied by Beals, Gaveau and Greiner. Using the heat kernel, we give formulas for Green functions of sub-Laplacians on the quaternion Heisenberg group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, W.W., Berenstein, C.A., Loustaunau, P., Sabadini, I., Struppa, D.: Regular functions of several quaternionic variables and the Cauchy–Fueter complex. J. Geom. Anal. 9, 1–15 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beals, R., Gaveau, B., Greiner, P.C.: The Green function of model step two hypoelliptic operators and the analysis of certain tangential Cauchy–Riemann complex. Adv. Math. 121, 288–345 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chang, D.C., Markina, I.: Geometric analysis on quaternion ℍ-type groups. J. Geom. Anal. 16, 265–294 (2006)

    MATH  MathSciNet  Google Scholar 

  4. Chang, D.C., Tie, J.: A note on Hermite and subelliptic operators. Acta Math. Sin. 21, 803–818 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dasgupta, A., Wong, M.W.: Weyl transforms and the inverse of the sub-Laplacian on the Heisenberg group. In: Pseudo-Differential Operators: Partial Differential Equations and Time-Frequency Analysis, pp. 27–36. Am. Math. Soc., Providence (2007)

    Google Scholar 

  6. Dasgupta, A., Wong, M.W.: Weyl transforms and the inverse of the heat equation on the Heisenberg group. In: New Developments in Pseudo-Differential Operators. Birkhäuser, Basel (2008, to appear)

    Google Scholar 

  7. Folland, G.B.: A fundamental solution for a subelliptic operator. Bull. Am. Math. Soc. 79, 373–376 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  8. Folland, G.B., Stein, E.M.: Estimates for the \({\overline{\partial}}_{b}\) complex and analysis on the Heisenberg group. Commun. Pure Appl. Math. 27, 429–522 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fueter, R.: Die funktionentheorie der differentialgleichungen Θ u=0 und Θ Θ u=0 mit vier reellen variablen. Comment. Math. Helv. 7, 307–330 (1934)

    Article  MathSciNet  Google Scholar 

  10. Fueter, R.: Über die analytische darstellung der regulären funktionen einer quaternionenvariablen. Comment. Math. Helv. 8, 371–378 (1935)

    Article  MathSciNet  Google Scholar 

  11. Gaveau, B.: Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents. Acta Math. 139, 95–153 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gürlebeck, K., Sprössig, W.: Quaternionic and Clifford Calculus for Physicists and Engineers. Wiley, New York (1997)

    MATH  Google Scholar 

  13. Hörmander, L.: Hypoelliptic second order differential equations. Acta Math. 119, 147–171 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hulanicki, A.: The distribution of energy in the Brownian motion in the Gaussian field and analytic-hypoellipticity of certain subelliptic operators on the Heisenberg group. Stud. Math. 56, 165–173 (1976)

    MATH  MathSciNet  Google Scholar 

  15. Kim, J., Wong, M.W.: Positive definite temperature functions on the Heisenberg group. Appl. Anal. 85, 987–1000 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  17. Sudbery, A.: Quaternionic analysis. Math. Proc. Camb. Philos. Soc. 85, 199–224 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  18. Thangavelu, S.: Harmonic Analysis on the Heisenberg Group. Birkhäuser, Boston (1998)

    MATH  Google Scholar 

  19. Thangavelu, S.: An Introduction to the Uncertainty Principle: Hardy’s Theorem on Lie Groups. Birkhäuser, Boston (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingzhi Tie.

Additional information

Communicated by Carlos Berenstein.

This research has been supported by the Natural Sciences and Engineering Research Council of Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tie, J., Wong, M.W. The Heat Kernel and Green Functions of Sub-Laplacians on the Quaternion Heisenberg Group. J Geom Anal 19, 191–210 (2009). https://doi.org/10.1007/s12220-008-9038-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-008-9038-7

Keywords

AMS Subject Classifications

Navigation