Skip to main content
Log in

Tracking the Motion of an Intruder Particle in a Three-Dimensional Granular Bed On-board the Chinese Space Station

  • Research
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) particle tracking is a challenging task in dense granular systems. Magnetic particle tracking has been developed in recent years to reconstruct a tracer’s trajectory in granular systems. The method can be low-cost, compact, and flexible. In this work we applied a Hall sensor array method to track the trajectories of a magnetic intruder particle in a 3D granular bed in the centrifuge of the Chinese Space Station (CSS). We present a developed algorithm. By placing sensors in an array in a same plane, our algorithm can exclude the interference of varying external field. The method’s static accuracy can reach 0.02 cm, and the maximum deviation of our measurement from a known path is also checked to be 0.02 cm. On CSS, two independent sensor arrays are used to cross-check the accuracy of the method. The two measured trajectories are well overlapped. This confirms the method’s reliability and robustness of tracking an intruder in a dense granular bed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  • Andò, E., Hall, S.A., Viggiani, G., Desrues, J., Bésuelle, P.: Grain-scale experimental investigation of localised deformation in sand: a discrete particle tracking approach. Acta Geotech. 7, 1–13 (2012)

    Article  Google Scholar 

  • Bokkers, G., Sint Annaland, M., Kuipers, J.: Mixing and segregation in a bidisperse gas-solid fluidised bed: a numerical and experimental study. Powder Technol. 140(3), 176–186 (2004)

    Article  Google Scholar 

  • Buist, K.A., Gaag, A.C., Deen, N.G., Kuipers, J.A.: Improved magnetic particle tracking technique in dense gas fluidized beds. AIChE J. 60(9), 3133–3142 (2014)

    Article  Google Scholar 

  • Buist, K., Van Erdewijk, T., Deen, N., Kuipers, J.: Determination and comparison of rotational velocity in a pseudo 2-d fluidized bed using magnetic particle tracking and discrete particle modeling. AIChE J. 61(10), 3198–3207 (2015)

    Article  Google Scholar 

  • Buist, K.A., Jayaprakash, P., Kuipers, J., Deen, N.G., Padding, J.T.: Magnetic particle tracking for nonspherical particles in a cylindrical fluidized bed. AIChE J. 63(12), 5335–5342 (2017)

    Article  Google Scholar 

  • Hall, S.A., Muir Wood, D., Ibraim, E., Viggiani, G.: Localised deformation patterning in 2D granular materials revealed by digital image correlation. Granul. Matter 12, 1–14 (2010)

    Article  Google Scholar 

  • Hu, C., Meng, M.Q.-H., Mandal, M.: A linear algorithm for tracing magnet position and orientation by using three-axis magnetic sensors. IEEE Trans. Magn. 43(12), 4096–4101 (2007)

    Article  Google Scholar 

  • Idakiev, V., Mörl, L.: How to measure the particle translation and rotation in a spouted and fluidized bed. J. Chem. Technol. Metall. 48(5), 445–450 (2013)

    Google Scholar 

  • Karlsson, S., Björn, I.N., Folestad, S., Rasmuson, A.: Measurement of the particle movement in the fountain region of a Wurster type bed. Powder Technol. 165(1), 22–29 (2006)

    Article  Google Scholar 

  • Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2(2), 164–168 (1944)

    Article  MathSciNet  Google Scholar 

  • Link, J.M.: Development and validation of a discrete particle model of a spout-fluid bed granulator. Ph.D. Thesis, University of Twente, Netherlands (2006)

  • Link, J., Zeilstra, C., Deen, N., Kuipers, H.: Validation of a discrete particle model in a 2D spout-fluid bed using non-intrusive optical measuring techniques. Can. J. Chem. Eng. 82(1), 30–36 (2004)

    Article  Google Scholar 

  • Liu, G.-Q., Li, S.-Q., Zhao, X.-L., Yao, Q.: Experimental studies of particle flow dynamics in a two-dimensional spouted bed. Chem. Eng. Sci. 63(4), 1131–1141 (2008)

    Article  Google Scholar 

  • Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11(2), 431–441 (1963)

    Article  MathSciNet  Google Scholar 

  • Marston, J.O., Thoroddsen, S.T.: Investigation of granular impact using positron emission particle tracking. Powder Technol. 274, 284–288 (2015)

    Article  Google Scholar 

  • Mema, I., Buist, K.A., Kuipers, J., Padding, J.T.: Fluidization of spherical versus elongated particles: Experimental investigation using magnetic particle tracking. AIChE J. 66(4), 16895 (2020)

    Article  Google Scholar 

  • Mohs, G., Gryczka, O., Heinrich, S., Mörl, L.: Magnetic monitoring of a single particle in a prismatic spouted bed. Chem. Eng. Sci. 64(23), 4811–4825 (2009)

    Article  Google Scholar 

  • Mosorov, V., Sankowski, D., Dyakowski, T., et al.: The ‘best-correlated pixels’ method for solid mass flow measurements using electrical capacitance tomography. Meas. Sci. Technol. 13(12), 1810 (2002)

    Article  Google Scholar 

  • Müller, C.R., Holland, D.J., Sederman, A.J., Mantle, M.D., Gladden, L.F., Davidson, J.: Magnetic resonance imaging of fluidized beds. Powder Technol. 183(1), 53–62 (2008a)

  • Müller, C., Davidson, J., Dennis, J., Fennell, P., Gladden, L., Hayhurst, A., Mantle, M., Rees, A., Sederman, A.: Oscillations in gas-fluidized beds: Ultra-fast magnetic resonance imaging and pressure sensor measurements. Powder Technol. 177(2), 87–98 (2007)

    Article  Google Scholar 

  • Müller, C.R., Davidson, J.F., Dennis, J.S., Fennell, P., Gladden, L.F., Hayhurst, A.N., Mantle, M.D., Rees, A., Sederman, A.J.: Real-time measurement of bubbling phenomena in a three-dimensional gas-fluidized bed using ultrafast magnetic resonance imaging. Phys. Rev. Lett. 96(15), 154504 (2006)

    Article  Google Scholar 

  • Müller, C.R., Holland, D.J., Sederman, A.J., Scott, S.A., Dennis, J.S., Gladden, L.F.: Granular temperature: comparison of magnetic resonance measurements with discrete element model simulations. Powder Technol. 184(2), 241–253 (2008b)

  • Niedostatkiewicz, M., Tejchman, J., Chaniecki, Z., Grudzień, K.: Determination of bulk solid concentration changes during granular flow in a model silo with ECT sensors. Chem. Eng. Sci. 64(1), 20–30 (2009)

    Article  Google Scholar 

  • Ott, F., Herminghaus, S., Huang, K.: Radar for tracer particles. Rev. Sci. Instrum. 88(5), 051801 (2017). https://doi.org/10.1063/1.4982942

    Article  Google Scholar 

  • Parker, D.: Positron emission particle tracking and its application to granular media. Rev. Sci. Instrum. 88(5), 051803 (2017)

    Article  Google Scholar 

  • Ren, X.-H., Stapf, S., Blümich, B.: Magnetic resonance visualisation of flow and pore structure in packed beds with low aspect ratio. Chem. Eng. Technol. 28(2), 219–225 (2005)

    Article  Google Scholar 

  • Schlageter, V., Besse, P.-A., Popovic, R., Kucera, P.: Tracking system with five degrees of freedom using a 2D-array of hall sensors and a permanent magnet. Sens. Actuator A-Phys. 92(1–3), 37–42 (2001)

    Article  Google Scholar 

  • Schlageter, V., Drljaca, P., Popovic, R.S., Kučera, P.: A magnetic tracking system based on highly sensitive integrated hall sensors. JSME Int. J. Ser. C Mech. Syst. Mach. Elem. Manuf. 45(4), 967–973 (2002)

    Google Scholar 

  • Schröter, M., Lyv, C., Huang, J., Huang, K.: Challenges of ‘imaging’ particulate materials in three dimensions. Pap. Phys. 14, 140015–140015 (2022)

    Article  Google Scholar 

  • Song, S., Li, B., Qiao, W., Hu, C., Ren, H., Yu, H., Zhang, Q., Meng, M.Q.-H., Xu, G.: 6-D magnetic localization and orientation method for an annular magnet based on a closed-form analytical model. IEEE Trans. Magn. 50(9), 1–11 (2014)

    Article  Google Scholar 

  • Tao, X., Tu, X., Wu, H.: A new development in magnetic particle tracking technology and its application in a sheared dense granular flow. Rev. Sci. Instrum. 90(6), 065116 (2019)

    Article  Google Scholar 

  • Vergne, C., Inácio, J., Quirin, T., Sargent, D., Madec, M., Pascal, J.: Tracking of a magnetically navigated millirobot with a magnetic field camera. IEEE Sens. J. 1 (2023). https://doi.org/10.1109/JSEN.2023.3264496

  • Wang, C., Lv, Z., Li, D.: Experimental study on gas-solids flows in a circulating fluidised bed using electrical capacitance tomography. Powder Technol. 185(2), 144–151 (2008)

    Article  Google Scholar 

  • Wildenberg, S., Jia, X., Léopoldès, J., Tourin, A.: Ultrasonic tracking of a sinking ball in a vibrated dense granular suspension. Sci. Rep. 9(1), 5460 (2019)

    Article  Google Scholar 

  • Windows-Yule, C., Seville, J., Ingram, A., Parker, D.: Positron emission particle tracking of granular flows. Annu. Rev. Chem. Biomol. Eng. 11, 367–396 (2020)

    Article  Google Scholar 

  • Wong, Y.S.: Particle motion in relatively thin fluidised bed models. Chem. Eng. Sci. 61(18), 6234–6238 (2006)

    Article  Google Scholar 

Download references

Funding

This study is supported by the Space Application System of China Manned Space Program YYWT-0601-EXP-20, the ESA-CMSA/CSU Space Scince and Utilization collaboration program, and the National Key R&D Program of China (2022YFF0503504). K.C. and T.L. would like to thank the support by Wenzhou Institute, University of Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

Ke Cheng developed the algorithm and processed the experimental data. Meiying Hou wrote the draft and is responsible for the research. Tuo Li and Mingcheng Yang participate in the discussion. Zhihong QIao, Peng Liu, Jianzhi Ding, Wei Sun, Yuman Li, Fade Gao and Xiang Li are responsible for the instrumentation.

Corresponding author

Correspondence to Meiying Hou.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate and Publish

All the authors have agreed to participate and publish.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, K., Hou, M., Li, T. et al. Tracking the Motion of an Intruder Particle in a Three-Dimensional Granular Bed On-board the Chinese Space Station. Microgravity Sci. Technol. 36, 15 (2024). https://doi.org/10.1007/s12217-024-10102-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12217-024-10102-2

Keywords

Navigation