Skip to main content
Log in

Abstract

This article is concerned with an appropriate definition of the fractional derivative and integral based on the concept of new generalized Caputo-type fractional derivative introduced recently by Odibat and Baleanu (Appl Numer Math 156:94-105, 2020), hence the abbreviated name OBC, in fuzzy environment. Using this concept, we provide some results on the existence and uniqueness of solutions for a class of fractional fuzzy initial value problems of order \(m-1< \kappa < m \) under the newly introduced OBC derivative. Further, we present some applications of the established derivative in the real world with the help of numerical examples based on Euler’s method of integration. Along with a theoretical example, we study an example depicting Allee’s effect and another model of the growth of technological innovations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abdoon, M.A., Saadeh, R., Berir, M., Guma, F.E., Ali, M.: Analysis, modeling and simulation of a fractional-order influenza model. Alex. Eng. J. 74, 231–240 (2023)

    Article  Google Scholar 

  2. Agarwal, R.P., Baleanu, D., Nieto, J.J., Torres, D.F.M., Yong, Z.: A survey on fuzzy fractional differential and optimal control nonlocal evolution equations. J. Comput. Appl. Math. 339, 3–29 (2018)

    Article  MathSciNet  Google Scholar 

  3. Agarwal, R.P., Lakshmikantham, V., Nieto, J.J.: On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal. 72, 2859–2862 (2010)

    Article  MathSciNet  Google Scholar 

  4. Akram, M., Muhammad, G., Allahviranloo, T.: Explicit analytical solutions of an incommensurate system of fractional differential equations in a fuzzy environment. Inf. Sci. 645, 119372 (2023)

    Article  Google Scholar 

  5. Al-Smadi, M., Arqub, O.A., Zeidan, D.: Fuzzy fractional differential equations under the Mittag–Leffler kernel differential operator of the abc approach: theorems and applications. Chaos Solitons Fractals 146, 110891 (2021)

    Article  MathSciNet  Google Scholar 

  6. Allahviranloo, T.: Fuzzy Fractional Differential Operators and Equations. Springer, Switzerland (2021)

    Book  Google Scholar 

  7. Allahviranloo, T., Ghanbari, B.: On the fuzzy fractional differential equation with interval Atangana–Baleanu fractional derivative approach. Chaos Solitons Fractals 130, 109397 (2020)

    Article  MathSciNet  Google Scholar 

  8. Allahviranloo, T., Kiani, N.A., Barkhordari, M.: Toward the existence and uniqueness of solutions of second-order fuzzy differential equations. Inf. Sci. 179, 1207–1215 (2009)

    Article  MathSciNet  Google Scholar 

  9. Allee, W.C., Bowen, E.S.: Studies in animal aggregations: mass protection against colloidal silver among goldfishes. J. Exp. Zool. 61(2), 185–207 (1932)

    Article  CAS  Google Scholar 

  10. Dwivedi, A., Rani, G., Gautam, G.R.: Existence of solutions of fuzzy fractional differential equations. Palest. J. Math. 11(Special Issue I), 125–132 (2022)

    MathSciNet  Google Scholar 

  11. Braun, M.: Differential Equations and Their Applications. Springer, Berlin (1993)

    Book  Google Scholar 

  12. Caputo, M.: Alternative Public Economics. Elgar, Cheltenham (2014)

    Google Scholar 

  13. Caputo, M., Fabrizio, M.: Damage and fatigue described by a fractional derivative model. J. Comput. Phys. 293, 400–408 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  14. Dwivedi, A., Rani, G., Dabas, J., Gautam, G.R.: On the concept of solutions for fuzzy fractional initial value problem. J. Comput. Math. 6(1), 310–329 (2022)

    Google Scholar 

  15. El-Shahed, M.: Fractional calculus model of the semilunar heart valve vibrations. Int. Des. Eng. Tech. Conf. Comput. Inf. Eng. Conf. 5, 711–714 (2003)

    Google Scholar 

  16. Elbadri, M., Abdoon, M.A., Berir, M., Almutairi, D.K.: A numerical solution and comparative study of the symmetric Rossler attractor with the generalized caputo fractional derivative via two different methods. Mathematics 11, 13 (2023)

    Article  Google Scholar 

  17. Georgiou, D.N., Nieto, J.J., Rodríguez-López, R.: Initial value problems for higher-order fuzzy differential equations. Nonlinear Anal. Theory Methods Appl. 63, 587–600 (2005)

    Article  MathSciNet  Google Scholar 

  18. Hoa, N.V., Vu, H., Duc, T.M.: Fuzzy fractional differential equations under Caputo-Katugampola fractional derivative approach. Fuzzy Sets Syst. 375, 70–99 (2019)

    Article  MathSciNet  Google Scholar 

  19. Katugampola, U.N.: New approach to a generalized fractional integral. Appl. Math. Comput. 218, 860–865 (2011)

    MathSciNet  Google Scholar 

  20. Lakshmikantham, V., Mohapatra, R.N.: Theory of Fuzzy Differential Equations and Inclusions. Taylor and Francis, New York (2003)

    Google Scholar 

  21. Lakshmikantham, V., Vatsala, A.: Basic theory of fractional differential equation. Nonlinear Anal. 69, 2677–2682 (2008)

    Article  MathSciNet  Google Scholar 

  22. Laskin, N.: Fractional schrödinger equation. Phys. Rev. E 66, 056108 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  23. Latif, A.: Banach contraction principle and its generalizations. In: Topics in Fixed Point Theory. Springer, pp. 33–64 (2014)

  24. Mazandarani, M., Pariz, N.: Sub-optimal control of fuzzy linear dynamical systems under granular differentiability concept. ISA Trans. 76, 1–17 (2018)

    Article  PubMed  Google Scholar 

  25. Mazandarani, M., Pariz, N., Kamyad, A.V.: Granular differentiability of fuzzy-number-valued functions. IEEE Trans. Fuzzy Syst. 26(1), 310–323 (2018)

    Article  Google Scholar 

  26. Mazandarani, M., Zhao, Y.: Fuzzy bang–bang control problem under granular differentiability. J. Frankl. Inst. 355(12), 4931–4951 (2018)

    Article  MathSciNet  Google Scholar 

  27. Miller, K., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations. Wiley, New York (1993)

    Google Scholar 

  28. Najariyan, M., Zhao, Y.: Fuzzy fractional quadratic regulator problem under granular fuzzy fractional derivatives. IEEE Trans. Fuzzy Syst. 26(4), 2273–2288 (2018)

    Article  Google Scholar 

  29. Najariyan, M., Zhao, Y.: Granular fuzzy pid controller. Expert Syst. Appl. 167, 114182 (2021)

    Article  Google Scholar 

  30. Odibat, Z.: A universal predictor-corrector algorithm for numerical simulation of generalized fractional differential equations. Nonlinear Dyn. 105, 2363–2374 (2021)

    Article  Google Scholar 

  31. Odibat, Z., Baleanu, D.: Numerical simulation of initial value problems with generalized caputo-type fractional derivatives. Appl. Numer. Math. 156, 94–105 (2020)

    Article  MathSciNet  Google Scholar 

  32. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

    Google Scholar 

  33. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    Google Scholar 

  34. Qazza, A., Abdoon, M., Saadeh, R., Berir, M.: A new scheme for solving a fractional differential equation and a chaotic system. Eur. J. Pure Appl. Math. 16(2), 1128–1139 (2023)

    Article  Google Scholar 

  35. Rahmi, E., Darti, I., Suryanto, A., Trisilowati, Panigoro, H.S.: Stability analysis of a fractional-order Leslie-Gower model with allee effect in predator. J. Phys. Conf. Ser. 1821, 012051 (2021)

    Article  Google Scholar 

  36. Rashid, S., Kaabar, M.K., Althobaiti, A., Alqurashi, M.: Constructing analytical estimates of the fuzzy fractional-order Boussinesq model and their application in oceanography. J. Ocean Eng. Sci. 8(2), 196–215 (2023)

    Article  Google Scholar 

  37. Ross, B.: A brief history and exposition of the fundamental theory of fractional calculus. Fract. Calc. Appl. 57, 1–36 (1975)

    Google Scholar 

  38. Saadeh, R., Abdoon, A.M., Qazza, A., Berir, M.: A numerical solution of generalized caputo fractional initial value problems. Fract. Fract. 7, 4 (2023)

    Google Scholar 

  39. Vu, H., Ghanbari, B., Van Hoa, N.: Fuzzy fractional differential equations with the generalized Atangana–Baleanu fractional derivative. Fuzzy Sets Syst. 429, 1–27 (2020)

    Article  MathSciNet  Google Scholar 

  40. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–355 (1965)

    Article  Google Scholar 

  41. Zimmermann, H.-J.: Fuzzy Set Theory—and Its Applications. Springer, Netherlands (2001)

    Book  Google Scholar 

  42. Záivada, P.: Relativistic wave equations with fractional derivatives and pseudo differential operators. J. Appl. Math. 2, 163–197 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganga Ram Gautam.

Ethics declarations

Conflict of interest

Authors declare that they have no “competing financial interests”.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwivedi, A., Rani, G. & Gautam, G.R. Analysis on the solution of fractional fuzzy differential equations. Rend. Circ. Mat. Palermo, II. Ser (2024). https://doi.org/10.1007/s12215-024-01006-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12215-024-01006-6

Keywords

Mathematics Subject Classification

Navigation