Skip to main content
Log in

Vision-based haptic feedback for capsule endoscopy navigation: a proof of concept

  • Research Paper
  • Published:
Journal of Micro-Bio Robotics Aims and scope Submit manuscript

Abstract

In this paper, a vision-based haptic feedback system has been proposed with the aim to assist the movement of an endoscopic device during capsule endoscopy (CE) procedures. We present a general system architecture consisting of three modules responsible for vision, haptic guidance and control of movements. The vision module generates 3D local maps as well as local navigation trajectory for endoluminal navigation. The haptic guidance module consists of a haptic device that allows the user to control the movement of the capsule along the generated path. The haptics module also helps the operator by transforming the 3D maps and the relative paths into a guiding virtual force. Measuring the current relative distance between the user input and the maps boundaries, the haptic guidance module will check if the user is moving away or toward the colonic walls and will generate a feedback force with the aim to assist the operator during the navigation procedure. The user will also sense an attractive virtual feedback force toward the generated path that will help the user in the navigation. Finally, the movement control module is the interface between the haptics module and the chosen manipulator. The final goal is to develop a complete active CE robotic platform with haptic feedback in order to enhance safety, to reduce cost (using the same system as a training simulator as well as real endoscopic platform) and to help the operator during the navigation by combining all 3D local maps into a full 3D reconstructed colon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. World health organization. [Online]. Available: http://www.who.int/mediacentre/factsheets/fs297/en/, [May 20, 2016]

  2. International agency for research on cancer - estimated incidence, mortality and prevalence worldwide in 2012. [Online]. Available: http://globocan.iarc.fr/Pages/fact-sheets-cancer.aspx/, [May 20, 2016]

  3. Cancer research uk. [Online]. Available: http://www.cancerresearchuk.org/cancer-info/cancerstats/types/bowel/survival/stage/, [May 20, 2016]

  4. Sliker LJ, Ciuti G (2014) “Flexible and capsule endoscopy for screening, diagnosis and treatment,”. Expert Rev Med Dev 11(6):649–666

    Article  Google Scholar 

  5. Fan Y, Meng M-H, Li B (2010) 3D reconstruction of wireless capsule endoscopy images. In: Annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 5149–5152

  6. Sliker L, Ciuti G, Rentschler M, Menciassi A (2015) Magnetically driven medical devices: a review. Expert Rev Med Dev 12(6):737–752

    Article  Google Scholar 

  7. Sliker LJ, Kern MD, Schoen JA, Rentschler ME (2012) Surgical evaluation of a novel tethered robotic capsule endoscope using micro-patterned treads. Surg Endos 26(10):2862–2869

    Article  Google Scholar 

  8. Valdastri P, Webster RJ III, Quaglia C, Quirini M, Menciassi A, Dario P (2009) A new mechanism for mesoscale legged locomotion in compliant tubular environments. IEEE Trans Robot 25(5):1047–1057

    Article  Google Scholar 

  9. Carpi F, Pappone C (2009) Magnetic maneuvering of endoscopic capsules by means of a robotic navigation system. IEEE Trans Biomed Eng 56(5):1482–1490

    Article  Google Scholar 

  10. Ciuti G, Valdastri P, Menciassi A, Dario P (2010) Robotic magnetic steering and locomotion of capsule endoscope for diagnostic and surgical endoluminal procedures. Robotica 28(02):199– 207

    Article  Google Scholar 

  11. Lucarini G, Mura M, Ciuti G, Rizzo R, Menciassi A (2015) Electromagnetic control system for capsule navigation: Novel concept for magnetic capsule maneuvering and preliminary study. J Med Biol Eng 35(4):428–436

    Article  Google Scholar 

  12. Lucarini G, Ciuti G, Mura M, Rizzo R, Menciassi A (2015) A new concept for magnetic capsule colonoscopy based on an electromagnetic system. Int J Adv Robot Syst 12:25

    Google Scholar 

  13. Ciuti G, Donlin R, Valdastri P, Arezzo A, Menciassi A, Morino M, Dario P et al (2010) Robotic versus manual control in magnetic steering of an endoscopic capsule. Endoscopy 42(2):148

    Article  Google Scholar 

  14. Okamura AM (2004) Methods for haptic feedback in teleoperated robot-assisted surgery. Ind Robot Int J 31 (6):499–508

    Article  Google Scholar 

  15. Reilink R, Stramigioli S, Kappers AM, Misra S (2011) Evaluation of flexible endoscope steering using haptic guidance. Int J Med Robot Comput Assist Surg 7(2):178–186

    Article  Google Scholar 

  16. Ghanbari A, Horan B, Nahavandi S, Chen X, Wang W (2014) Haptic microrobotic cell injection system. IEEE Syst J 8(2):371–383

    Article  Google Scholar 

  17. Pacchierotti C, Magdanz V, Medina-Sánchez M, Schmidt O G, Prattichizzo D, Misra S (2015) Intuitive control of self-propelled microjets with haptic feedback. J Micro-Bio Robot 10(1–4):37–53

    Article  Google Scholar 

  18. Mehrtash M, Khamesee MB, Tarao S, Tsuda N, Chang J-Y (2012) Human-assisted virtual reality for a magnetic-haptic micromanipulation platform. Microsyst Technol 18(9–10):1407–1415

    Article  Google Scholar 

  19. Maier-Hein L, Groch A, Bartoli A, Bodenstedt S, Boissonnat G, Chang P-L, Clancy N, Elson DS, Haase S, Heim E et al (2014) Comparative validation of single-shot optical techniques for laparoscopic 3-d surface reconstruction. IEEE Trans Med Imag 33(10):1913–1930

    Article  Google Scholar 

  20. Maier-Hein L, Mountney P, Bartoli A, Elhawary H, Elson D, Groch A, Kolb A, Rodrigues M, Sorger J, Speidel S et al (2013) Optical techniques for 3d surface reconstruction in computer-assisted laparoscopic surgery. Med Image Anal 17(8):974–996

    Article  Google Scholar 

  21. Ciuti G, Visentini-Scarzanella M, Dore A, Menciassi A, Dario P, Yang G-Z (2012) Intra-operative monocular 3D reconstruction for image-guided navigation in active locomotion capsule endoscopy. In: 4th IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob), pp 768–774

  22. Siciliano B, Khatib O (2008) Springer handbook of robotics. Springer, Berlin

    Book  MATH  Google Scholar 

  23. Linner T, Shrikathiresan A, Vetrenko M, Ellmann B Modeling and operating robotic environent using gazebo/ros. In: Proceedings of the 28th international symposium on automation and robotics in construction (ISARC2011), pp 957–962

  24. Bouguet JY (2004) Camera calibration toolbox for matlab

  25. Engel J, Stückler J, Cremers D (2015) Large-scale direct slam with stereo cameras. In: Proceedings of the IEEE international conference on intelligent robots and systems (IROS)

  26. Mur-Artal R, Montiel J, Tardos J (2015) Orb-slam: a versatile and accurate monocular slam system. IEEE Trans Robot 31(5):1147–1163

    Article  Google Scholar 

  27. Visentini-Scarzanella M, Stoyanov D, Yang G-Z (2012) Metric depth recovery from monocular images using shape-from-shading and specularities. In: 2012 19th IEEE international conference on image processing (ICIP). IEEE, pp 25–28

  28. Hast A, Nysjö J, Marchetti A (2013) Optimal ransac-towards a repeatable algorithm for finding the optimal set

  29. Quigley M, Conley K, Gerkey B, Faust J, Foote T, Leibs J, Wheeler R, Ng AY (2009) Ros: an open-source robot operating system. ICRA Workshop Open Source Softw 3(3.2):5

    Google Scholar 

  30. Chitta S, Sucan I, Cousins S (2012) Moveit![ros topics]. IEEE Robot Autom Mag 1(19):18–19

    Article  Google Scholar 

  31. Abu-Kheil Y, Ciuti G, Mura M, Dias J, Dario P, Seneviratne L (2015) Vision and inertial-based image mapping for capsule endoscopy. In: 2015 International conference on information and communication technology research (ICTRC). IEEE, pp 84–87

Download references

Acknowledgment

The authors would like to thank Reem Ashour (Khalifa University Robotic Institute, Abu Dhabi, UAE) for her suggestions and support in the development of the Gazebo environment and in the development of the haptic force field generation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Mura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mura, M., Abu-Kheil, Y., Ciuti, G. et al. Vision-based haptic feedback for capsule endoscopy navigation: a proof of concept. J Micro-Bio Robot 11, 35–45 (2016). https://doi.org/10.1007/s12213-016-0090-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12213-016-0090-2

Keywords

Navigation