Skip to main content
Log in

Hypoglycemic and hypolipidemic effects of sugar beet (Beta vulgaris L.) extract on C57BL/KsJ db/db mice

  • Research Paper
  • Published:
Rendiconti Lincei. Scienze Fisiche e Naturali Aims and scope Submit manuscript

Abstract

Sugar beet (Beta vulgaris L. (BV)) is one of the most important economic crops. The purpose of this study was to examine the effects and mechanism of BV on the glucolipid metabolism. The study was conducted on C57BL/KsJ db/db mice, and the experiments were divided into four groups: diabetic control (distilled water, db/db-Veh), metformin treatment (metformin, db/db-Met, 250 mg/kg), and BV treatment (BV, db/db, 1.8 and 3.6 g/kg of BV). The metformin and BV were intragastrically administrated into mice. The results showed that the treatment with BV resulted in the decreased levels of the fasting blood glucose (FBG), uric acid (UA), and lipid, as well as improving the abnormalities of liver and pancreas. The protein levels of insulin receptor substrate‐1 (IRS‐1)/PI3K/AKT and AMP-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) were quantified by Western blotting. The results showed that the hypoglycemic effect was partly due to the activation of the IRS‐1/PI3K/AKT signaling pathway, and the AMPK/ACC signaling pathway was responsible for the hypolipidemic activity. This study demonstrated that BV possesses hypoglycemic and hypolipidemic effects on diabetic db/db mice, indicating that it can be contributed to the treatment of type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  • Abu-Elheiga L, Matzuk MM, Abo-Hashema KAH, Wakil SJ (2001) Continuous fatty acid oxidation and reduced fat storage in mice lacking Acetyl-CoA Carboxylase 2. Science 291(5513):2613–2616

    Article  CAS  Google Scholar 

  • Aragno M, Mastrocola R, Catalano MG, Brignardello E, Danni O, Boccuzzi G (2004) Oxidative stress impairs skeletal muscle repair in diabetic rats. Diabetes 53(4):1082–1088

    Article  CAS  Google Scholar 

  • Bârsan SC, Ivan AM, Luca LC, Luca E (2015) Sugar beet (Beta vulgaris L.) Yields and potential for bioethanol production under irrigation regime. Not Bot Horti Agrobo 43(2):455–461

    Article  Google Scholar 

  • Begum G, Dastagir G, Rauf A, Bawazeer S, Rahman KU, Ramadan MF (2020) Pharmacognostic characteristics and phytochemical profile of various parts of Parthenium hysterophorus. Rend Fis Acc Licei 31:853–872

    Article  Google Scholar 

  • Caballero EA (2017) Long-term studies of treatments for type 2 diabetes. Postgrad Med 129(3):352–365

    Article  Google Scholar 

  • Deng JJ, Liu Y, Duan ZG, Zhu CH, Hui JF, Mi Y, Ma P, Ma XX, Fan DD, Yang HX (2017) Protopanaxadiol and protopanaxatriol-type saponins ameliorate glucose and lipid metabolism in type 2 diabetes mellitus in high-fat diet/streptozocin-induced mice. Front Pharmacol 8:506

    Article  Google Scholar 

  • Durazzo A, Nazhand A, Lucarini M, Silva AM, Souto SB, Guerra F, Severino P, Zaccardelli M, Souto EB, Santini A (2021) Astragalus (Astragalus membranaceus Bunge): botanical, geographical, and historical aspects to pharmaceutical components and beneficial role. Rend Fis Acc Lincei 32:625–642

    Article  Google Scholar 

  • Evans E, Messerschmidt U (2017) Review: sugar beets as a substitute for grain for lactating dairy cattle. J Anim Sci Biotechno 8(3):539–548

    Google Scholar 

  • Fishman ML, Chau HK, Cooke PH, Yadav MP, Hotchkiss AT (2009) Physico-chemical characterization of alkaline soluble polysaccharides from sugar beet pulp. Food Hydrocolloid 23(6):1554–1562

    Article  CAS  Google Scholar 

  • Food and Agriculture Organization of the United Nations, FAOSTAT Statistics Database, Production of sugar beet in the EU in 2013.

  • Guo Y, Fu W, Xin YK, Bai JL, Peng HF, Fu LJ, Liu J, Li LP, Ma YJ, Jiang HW (2018) Antidiabetic and antiobesity effects of artemether in db/db mice. Biomed Res Int 2018:1–9

    Google Scholar 

  • Hossain Z, Golam F, Jaya NS, Mohd SA, Rosli H, Amru NB (2014) Bioethanol production from fermentable sugar juice. Sci World J 2014:957102

    Google Scholar 

  • Hsiang JC, Gane EJ, Bai WW, Gerred SJ (2015) Type 2 diabetes: a risk factor for liver mortality and complications in hepatitis B cirrhosis patients. J Gastroen Hepatol 30(3):591–599

    Article  CAS  Google Scholar 

  • Johnson JD, Luciani DS (2010) Mechanisms of pancreatic β-cell apoptosis in diabetes and its therapies. Adv Exp Med Biol (The Islets of Langerhans) 654:1–798

    Article  Google Scholar 

  • Liang WS, Zhang DD, Kang JL, Meng XB, Yang JB, Yang L, Xue N, Gao QY, Han SY, Gou XB (2018) Protective effects of rutin on liver injury in type 2 diabetic db/db mice. Biomed Pharmacother 107:721–728

    Article  CAS  Google Scholar 

  • Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129(7):1261–1274

    Article  CAS  Google Scholar 

  • Muhammad AI, Abdul MS (2015) Sugar beet potential to beat sugarcane as a sugar crop in Pakistan. Am Eur J Agric Environ Sci 15(1):36–44

    Google Scholar 

  • Naitoa YJ, Uchiyama K, Aoi W, Hasegawa G, Nakamura N, Yoshida N, Maoka T, Takahashi J, Yoshikawa T (2004) Prevention of diabetic nephropathy by treatment with astaxanthin in diabetic db/db mice. BioFactors 20(1):49–59

    Article  Google Scholar 

  • Nicolas M, Laurie JG (2006) Insulin resistance and improvements in signal transduction. Endocrine 29(1):73–80

    Article  Google Scholar 

  • Nie XQ, Chen HH, Zhang JY, Zhang YJ, Yang JW, Pan HJ, Song WX, Murad F, He YQ, Bian K (2016) Rutaecarpine ameliorates hyperlipidemia and hyperglycemia in fat-fed, streptozotocin-treated rats via regulating the IRS-1/PI3K/Akt and AMPK/ACC2 signaling pathways. Acta Pharmacol Sin 37(4):483–496

    Article  CAS  Google Scholar 

  • Oki JC (1995) Dyslipidemias in patients with diabetes mellitus: classification and risks and benefits of therapy. Pharmacotherapy 15(3):317–337

    CAS  Google Scholar 

  • Olusola OE (2015) Saponins: anti-diabetic principles from medicinal plants—a review. Pathophysiology 22(2):95–103

    Article  Google Scholar 

  • Piniés JA, González-Carril F, Arteagoitia JM, Irigoien I, Altzibar JM, Rodriguez-Murua JL, Echevarriarteun L, Sentinel Practice Network of the Basque Country (2014) Development of a prediction model for fatal and non-fatal coronary heart disease and cardiovascular disease in patients with newly diagnosed type 2 diabetes mellitus: the basque country prospective complications and mortality study risk engine (BASCORE). Diabetologia 57(11):2324–2333

    Article  Google Scholar 

  • Piscitelli F, Marzo VD (2021) Cannabinoids: a class of unique natural products with unique pharmacology. Rend Fis Acc Licei 32:5–15

    Article  Google Scholar 

  • Rodríguez LA, Toro ME, Vazquez F, Correa-Daneri ML, Gouiric SC, Vallejo MD (2010) Bioethanol production from grape and sugar beet pomaces by solid-state fermentation. Int J Hydrogen Energ 35(11):5914–5917

    Article  Google Scholar 

  • Rosa P, Antonio B, Roc R, Ramón S, Salort JMM (2018) BvCOLD1: a novel aquaporin from sugar beet (Beta vulgaris L.) involved in boron homeostasis and abiotic stress. Plant Cell Environ 41:2844–2857

    Article  Google Scholar 

  • Sharma K, Mccue P, Dunn SR (2003) Diabetic kidney disease in the db/db mouse. AJP-Renal Physiol 284(6):F1138–F1144

    Article  CAS  Google Scholar 

  • Stein SA, Lamos EM, Davis SN (2013) A review of the efficacy and safety of oral antidiabetic drugs. Expert Opin Drug Saf 12(2):153–175

    Article  CAS  Google Scholar 

  • Tan KT, Cheah JS (1990) Pathogenesis of type 1 and type 2 diabetes mellitus. Ann Acad Med Singap 19(4):506–511

    CAS  Google Scholar 

  • Wang Sh, Luo J, Lv Hh, Zhang Zh, Yang JC, Dong DD, Fang YW, Hu LJ, Liu MY, Liao ZC, Li J, Fang ZC, Wei YP, Han W, Shaikh AB, Yin DC, Shang P (2019) Safety of exposure to high static magnetic fields (2T–12T): a study on mice. Eur Radiol 29(11):6029–6037

    Article  Google Scholar 

  • Wu DT, Xuan YY, Ruan Y, Feng XC, Zhu YC, Jia CF, Liu J, Li H, Li LX, Dong XH (2016) Prevalence of macro- and microvascular complications in patients with type 2 diabetes and kidney disease with or without albuminuria in a single Chinese diabetes centre. Diabetes Vasc Dis Re 13(1):21–30

    Article  CAS  Google Scholar 

  • Wu JJ, Chen MM, Shi SS, Wang HJ, Li N, Su J, Liu RM, Huang ZL, Jin H, Ji XQ, Wang SC (2017) Hypoglycemic effect and mechanism of a pectic polysaccharide with hexenuronic acid from the fruits of Ficus pumila L. in C57BL/KsJ db/db mice. Carbohyd Polym 178:209–220

    Article  CAS  Google Scholar 

  • Xing QC, Chen YZ (2018) Antidiabetic effects of a Chinese herbal medicinal compound Sangguayin preparation via PI3K/Akt signaling pathway in db/db mice. Evid Based Complement Altern Med 1:1–11

    Article  Google Scholar 

  • Xiong H, Zhang SN, Zhao ZQ, Zhao P, Chen LY, Mei ZN (2018) Antidiabetic activities of entagenic acid in type 2 diabetic db/db mice and L6 myotubes via AMPK/GLUT4 pathway. J Ethnopharmacol 211:366–374

    Article  CAS  Google Scholar 

  • Xu JJ, Zhang J, Cai SH, Dong JY, Yang JY, Chen Z (2009) Metabonomics studies of intact hepatic and renal cortical tissues from diabetic db/db mice using high-resolution magic-angle spinning H-1 NMR spectroscopy. Anal Bioanal Chem 393:1657–1668

    Article  CAS  Google Scholar 

  • Xu J, Wang S, Feng TH, Chen Y, Yang GZ (2018) Hypoglycemic and hypolipidemic effects of total saponins from Stauntonia chinensis in diabetic db/db mice. J Cell Mol Med 22(12):6026–6038

    Article  CAS  Google Scholar 

  • Yoshikawa M, Murakami T, Kadoya M, Matsuda H, Muraoka O, Yamahara J, Murakami N (1996) Medicinal foodstuffs. III. Sugar beet. (1): hypoglycemic oleanolic acid oligoglycosides, betavulgarosides I, II, III, and IV, from the root of Beta vulgaris L. (Chenopodiaceae). Chem Pharm Bull 44(6):1212–1217

    Article  CAS  Google Scholar 

  • Yoshikawa M, Murakami T, Kadoya M, Yamahara J, Matsuda H (1998) Medicinal Foodstuffs. XV. Sugar Beet (2): structures of betavulgarosides V, VI, VII, VIII, IX, and X from the roots and leaves of sugar beet (Beta vulgaris L, Chenopodiaceae). Chem Pharm Bull 46(11):1758–1763

    Article  CAS  Google Scholar 

  • Zang MW, Zuccollo A, Hou XY, Nagata D, Walsh K, Herscovitz HY, Brecher P, Ruderman NB, Cohen RA (2004) AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells. J Biol Chem 279(46):47898–47905

    Article  CAS  Google Scholar 

  • Zhang LW, Su SL, Zhu Y, Guo JM, Guo S, Qian DW, Zhen OY, Duan JA (2019) Mulberry leaf active components alleviate type 2 diabetes and its liver and kidney injury in db/db mice through insulin receptor and TGF-β/Smads signaling pathway. Biomed Pharmacother 112:108675

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Jiangsu Provincial Natural Science Foundation of China (BK20190233), Science and Technology Develop Project in Changshu (CS202014).

Author information

Authors and Affiliations

Authors

Contributions

ZPW: writing original draft, data acquisition, analysis, and interpretation. YHS, HTH, and HTG: data acquisition and interpretation. WZ, JKT, HF, and SXL: supervision, project administration, review and editing, funding, and resources’ acquisition.

Corresponding authors

Correspondence to Hua Fan or Shouxin Li.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Ethics approval

The Experiment was approved by the Animal Ethics Committee of Zhejiang University (Approval Number: ZJU20200168).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 615 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Gong, H., Shen, Y. et al. Hypoglycemic and hypolipidemic effects of sugar beet (Beta vulgaris L.) extract on C57BL/KsJ db/db mice. Rend. Fis. Acc. Lincei 33, 205–212 (2022). https://doi.org/10.1007/s12210-022-01054-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-022-01054-z

Keywords

Navigation