Skip to main content
Log in

The influence of different modes of bioreactor operation on the efficiency of phenol degradation by Rhodococcus UKMP-5M

  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

The performance of phenol degradation by Rhodococcus UKMP-5M in different modes of bioreactor operation, batch, and continuous, was studied. The effects of agitation and aeration on the growth and phenol degradation by Rhodococcus UKMP-5M were first studied in batch cultivation using a 2 L stirred tank bioreactor. Continuous bioreactor operation was design based on batch cultivation data and was operated at different dilution rates, ranging from 0.05 to 0.20 h−1. The highest cell growth (0.262 g/L), phenol degradation time (12 h), and phenol hydroxylase enzyme (32.3 U/mL) in batch cultivation were obtained at the agitation speed of 160 rpm, DOT of 80 % saturation, and airflow rate of 1.5 vvm. In continuous operation, the highest steady-state cell concentration (0.03 g cell/L) and phenol degradation rate (0.082 g phenol/L/h) were achieved at the dilution rate of 0.18 h−1. The efficiency of phenol degradation rate was about 3.28 times higher obtained in continuous cultivation (0.082 g phenol/L/h) than in batch cultivation (0.025 g phenol/L/h).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adav SS, Chen MY, Lee DJ et al (2007) Degradation of phenol by Acinetobacter strain isolated from aerobic granules. Chemosphere 67:1566–1572

    Article  CAS  Google Scholar 

  • Ahmad SA, Syed MA, Arif NM et al (2011) Isolation, identification and characterization of elevayed phenol degrading Acinetobacter sp. strain AQ5NOL 1. Aus J Basic Appl Sci 5:1035–1045

    CAS  Google Scholar 

  • Ahmad SA, Shamaan NA, Arif NM et al (2012) Enhanced phenol degradation by immobilized Acinetobacter sp. strain AQ5NOL 1. World J Microbial Biotech 28:347–352

    Article  CAS  Google Scholar 

  • Ahmad SA, Ahamad KNEK, Johari WLW et al (2014) Kinetic of diesel degradtion by an acrylamide degrading bacterium. Rend Fis Acc 25:505–512

    Article  Google Scholar 

  • Alcocer AS, Ruiz-Ordaz N, Ramirez CJ et al (2007) Continuous biodegradation of single and mixed chlorophenols by a mixed microbial culture constituted by Burkholderia sp., Microbacterium phyllosphaerae, and Candida tropicalis. Biochem Eng J 37:201–211

    Article  Google Scholar 

  • Ali S, Lafuente RF, Cowan DA (1998) Meta-pathway degradation of phenolics by thermophilic Bacilli. Enzyme Microbial Technol 823:462–468

    Article  Google Scholar 

  • Annadurai G, Lee JF (2007) Application of artificial neural network model for the development of optimized complex medium degradation using Pseudomonas pictorum (NICM 2074). Biodegradation 18:383–392

    Article  CAS  Google Scholar 

  • APHA (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington

  • Arif NM, Ahmad SA, Syed MA et al (2012) Isolation and characterization of a phenol-degrading Rhodococcus sp. strain AQ5NOL KCTC 11961BP. J Basic Microbiol 52:1–10

    Article  Google Scholar 

  • Ariff A, Salleh MS, Ghani B et al (1996) Aeration and yeast extract requirements for kojic acid production by Aspergillus flavus link. Enzyme Microb Technol 19:545–550

    Article  CAS  Google Scholar 

  • Bai J, Wen JP, Li HM et al (2007) Kinetic modeling of growth and biodegradation of phenol and m-cresol using Alcaligenes faecalis. Proc Biochem 42:510–517

    Article  CAS  Google Scholar 

  • Banerjee A, Ghoshal AK (2010) Phenol degradation by Bacillus cereus: pathway and kinetic modelling. Bioresource Technol 101:5501–5507

    Article  CAS  Google Scholar 

  • Basha KM, Rajendran A, Thangavelu V (2010) Recent advances in the biodegradation of phenol: a review. Asian J Exp Biol Sci 1:219–234

    CAS  Google Scholar 

  • Chen XH, Wei G, Liu SY et al (2012) Growth kinetics and phenol degradation of highly efficient phenol-degrading Ochrobactrum sp. CH10. Environ Sci 33:3956–3961

    CAS  Google Scholar 

  • Collins LD, Daugulis AJ (1997) Biodegradation of phenol at high initial concentrations in two-phase partitioning batch and fed-batch bioreactors. Biotechnol Bioeng 55:155–162

    Article  CAS  Google Scholar 

  • D’Annibale A, Quaratino D, Federici F et al (2006) Effect of agitation and aeration on the reduction of pollutant load of olive mill wastewater by the white-rot fungus Panus tigrinus. Biochem Eng J 29:243–249

    Article  Google Scholar 

  • Daugulis AJ (2001) Two-phase partitioning bioreactors: a new technology platform for destroying xenobiotics. Trends Biotechnol 19:457–462

    Article  CAS  Google Scholar 

  • Dutta S, Chowdhury R, Bhattacharya P (2009) Stability and response analyses of phenol degrading biochemical systems. Indian J Chem Technol 16:7–16

    CAS  Google Scholar 

  • El-Naas MH, Al-Zuhair S, Makhlouf S (2010) Batch degradation of phenol in a spouted bed bioreactor system. J Ind Eng Chem 16:267–272

    Article  CAS  Google Scholar 

  • Essam T, Amin MA, Tayeb OE et al (2010) Kinetic and metabolic versatility of highly tolerant phenol degrading Alcaligenes strain TW1. J Hazard Mater 175:783–788

    Article  Google Scholar 

  • Feitkenhauer H, Schnicke S, Muller R et al (2003) Kinetic parameters of continuous cultures of Bacillusthermoleovorans sp. A2 degrading phenol at 65 °C. J Biotechnol 103:129–135

    Article  CAS  Google Scholar 

  • Futumata H, Harayama S (2001) Diversity in kinetics of trichloroethylene degrading activities exhibited by phenol-degrading bacteria. Appl Microbiol Biotechnol 55:248–253

    Article  Google Scholar 

  • Garcia-Ochoaa F, Gomeza E, Santosa VE et al (2010) Oxygen uptake rate in microbial processes: an overview. Biochem Eng J 49:289–307

    Article  Google Scholar 

  • Geng A, Soh AEW, Lim CJ et al (2006) Isolation and characterization of a phenol-degrading bacterium from an industrial activated sludge. Appl J Microbiol Biotechnol 71:728–735

    Article  CAS  Google Scholar 

  • Giavasis I, Harvey LM, McNeil B (2006) The effect of agitation and aeration on the synthesis and molecular weight of gellan in batch cultures of Sphingomonas paucimobilis. Enzyme Microb Technol 38:101–108

    Article  CAS  Google Scholar 

  • Gomez E, Santos VE, Alcon A et al (2006a) Oxygen transport rate on Rhodococcus erythropolis cultures: effect on growth and BDS capability. Chem Eng Sci 61:4595–4604

    Article  CAS  Google Scholar 

  • Gomez E, Santos VE, Alcon A et al (2006b) Oxygen uptake and mass transfer rates on growth of Pseudomonas putida CECT5279: influence on biodesulfurization (BDS) capability. Energy Fuels 20:1565–1571

    Article  CAS  Google Scholar 

  • Hoq MM, Hempel C, Deckwer DW (1994) Cellulase-free xylanase by Thermomyces lanuginosus RT9: effect of agitation, aeration, and medium components on production. J Biotechnol 37:49–58

    Article  CAS  Google Scholar 

  • Ibrahim S, Shukor MY, Syed MA et al (2016) Characterisation and growth kinetics studies of caffeine-degrading bacterium Leifsonia sp. strain SIU. Ann Microbiol 66:289–298

    Article  CAS  Google Scholar 

  • Jennifer VL, Andrew JD (2009) Oxygen mass transfer and hydrodynamics in multi-phase airlift bioscrubber system. Chem Eng Sci 64:4171–4177

    Article  Google Scholar 

  • Jia X, Wen J, Jiang Y et al (2006) Modeling of batch phenol biodegradation in internal loop airlift bioreactor with gas recirculation by Candida tropicalis. Chem Eng Sci 61:3463–3475

    Article  CAS  Google Scholar 

  • Kim JH, Oh KK, Lee ST et al (2002) Biodegradation of phenol and chlorophenols with defined mixed culture in shake-flasks and a packed bed reactor. Proc Biochem 37:1367–1373

    Article  CAS  Google Scholar 

  • Kovar KK, Egli T (1998) Growth kinetics of suspended microbial cells: from single-substrate-controlled growth to mixed-substrate kinetics. Microb Mol Biol Rev 62:646–666

    Google Scholar 

  • Kumari S, Chetty D, Ramdhani N et al (2013) Phenol degrading ability of Rhodococcus pyrinidivorans and Pseudomonas aeruginosa isolated from activated sludge plants in South Africa. J Environ Sci Health 48:947–953

    Article  CAS  Google Scholar 

  • Liu Y, Wei G, Chen X (2012) Isolation, identification and characteristics of a phenol-degrading bacterium. J Beijing Univ Chem Technol 39:58–62

    CAS  Google Scholar 

  • Lob KC, Tar CPP (2000) Effect of additional carbon sources on biodegradation of phenol. Bull Environ Contam Toxicol 64:756–763

    Article  Google Scholar 

  • Lopez JLC, Porcel EMR, Alberola IO et al (2006) Simultaneous determination of oxygen consumption rate and volumetric oxygen transfer coefficient in pneumatically agitated bioreactors. Ind Eng Chem Res 4:1167–1171

    Article  Google Scholar 

  • Margesin R, Fonteyne PA, Redl B (2005) Low-temperature biodegradation of high amounts of phenol by Rhodococcus sp. and Basidiomycetous yeasts. Research in Microbiology 156:68–75

    Article  CAS  Google Scholar 

  • Marrot B, Martinez AB, Moulin P et al (2006) Biodegradation of high phenol concentration by activated sludge in an immersed membrane bioreactor. Biochem Eng J 30:174–183

    Article  CAS  Google Scholar 

  • Mayer JG, Gallegos JR, Ordaz NR et al (2008) Phenol and 4-chlorophenol biodegradation by yeast Candida tropicalisin a fluidized bed reactor. Biochem Eng J 38:147–157

    Article  Google Scholar 

  • Mineta R, Salehia Z, Yoshikawab H et al (2011) Oxygen transfer during aerobic biodegradation of pollutants in a dense activated sludge slurry bubble column: actual volumetric oxygen transfer coefficient and oxygen uptake rate in p-nitrophenol degradation by acclimated waste activated sludge. Biochem Eng J 53:266–274

    Article  CAS  Google Scholar 

  • Moharikar A, Purohit HJ (2003) Specific ratio and survival of Pseudomonas CF600 as co-culture for phenol degradation in continuous cultivation. Int Biodeterior Biodegr 52:255–260

    Article  CAS  Google Scholar 

  • Mordocco A, Kuek C, Jenk R (1999) Continuous degradation of phenol at low concentration using immobilized Pseudomonas putida. Enzyme Microb Technol 25:530–536

    Article  CAS  Google Scholar 

  • Narang A, Konopka A, Ramkrishna D (1997) The dynamics of microbial growth on mixtures of substrates in batch reactors. J Theor Biol 184:301–317

    Article  CAS  Google Scholar 

  • Norazah MN, Jayasree N, Ahmad SA et al (2015) Disrupting Rhodococcus sp: a competent method for genomics and proteomics. J Chem Pharm Sci 8:336–341

    Google Scholar 

  • Othman AR, Bakar NA, Halmi MIE et al (2013) Kinetics of molybdenum reduction to molybdenum blue by Bacillus sp. strain A.rzi. Biomed Res Int. doi:10.1155/2013/371058

    Google Scholar 

  • Paca J Jr, Paca J, Kosteckova A et al (2005) Continuous aerobic phenol degradation by defined mixed immobilized culture in packed bed reactors. Folia Microbiol 50:301–308

    Article  CAS  Google Scholar 

  • Paca J Jr, Kremlackov V, Turek M et al (2007) Isolation and partial characterization of cytoplasmic NADPH dependent phenol hydroxylase oxidizing phenol to catechol in Candida tropicalisyeast. Enzyme Microb Technol 40:919–926

    Article  CAS  Google Scholar 

  • Pai SP, Hsu YL, Chong NM et al (1995) Continuous degradation of phenol by Rhodococcus sp. immobilized on granular activated carbon and in calcium alginate. Bioresour Technol 51:37–42

    Article  CAS  Google Scholar 

  • Paisio CE, Talano MA, Gonzalez PS et al (2012) Isolation and characterization of a Rhodococcus strain with phenol-degrading ability and its potential use for tannery effluent biotreatment. Environ Sci Pollut Res 19:3430–3439

    Article  CAS  Google Scholar 

  • Peng R, Yang G, Wang Q (2013) Isolation and mutagenesis of a novel phenol-degrading strain. Adv Mater Res 647:588–594

    Article  Google Scholar 

  • Petruccioli M, Fenice M, Piccioni P et al (1995) Effect of stirrer speed and buffering agents on the production of glucose oxidase and catalase by Penicilliumvariabile (P16) in benchtop bioreactor. Enzyme Microb Technol 17:336–339

    Article  CAS  Google Scholar 

  • Potumarthi R, Subhakar C, Jetty A (2007) Alkaline protease production by submerged fermentation in stirred tank reactor using Bacillus licheniformisNCIM-2042: effect of aeration and agitation regimes. Biochem Eng J 34:185–192

    Article  CAS  Google Scholar 

  • Prieto MB, Hidalgo A, Rodriguez-Fernandez C et al (2002a) Biodegradation of phenol in systhetic and industrial wastewater by Rhodococcus erythropolis UPV-1 immobilized in an air-stirred reactor with clarifier. Appl Microbiol Biotechnol 58:853–859

    Article  CAS  Google Scholar 

  • Prieto MB, Hidalgo AC, Serra JL et al (2002b) Degradation of phenol by Rhodococcus erythropolis UPV-1 immobilized on biolite in a packed-bed reactor. J Biotechnol 97:1–11

    Article  CAS  Google Scholar 

  • Ramanan RN, Tan JS, Mohd Shamzi M et al (2010) Optimization of osmotic shock process variables for enhancement of the release of periplasmic interferon-a2b from Escherichia coli using response surface method. Proc Biochem 45:196–202

    Article  CAS  Google Scholar 

  • Rao DG (ed) (2005) Rheology and mixing in fermentation broths, In: Introduction to biochemical engineering, 1st edn. Tata-McGraw Hill Publishing Company Limited, New Delhi

  • Santos VE, Galdeano C, Gomez E et al (2006) Oxygen uptake rate measurements both by the dynamic method and during the process growth of Rhodococcus erythropolis IGTS8: modelling and difference in results. Biochem Eng J 32:198–204

    Article  CAS  Google Scholar 

  • Santos VLCD, Monteiro ADS, Braga DBT et al (2009) Phenol degradation by Aureobasidium pullulans FE13 isolated from industrial effluents. J Hazard Mater 161:1413–1420

    Article  Google Scholar 

  • Saravanan P, Pakshirajan K, Saha P (2008) Growth kinetics of an indigenous mixed microbial consortium during phenol degradation in a batch reactor. Bioresour Technol 99:205–209

    Article  CAS  Google Scholar 

  • Sharma S, Malik A, Satya S (2009) Application of response surface methodology (RSM) for optimization of nutrient supplementation for Cr(VI) removal by Aspergillus lentulus AML05. J Hazard Mater 164:1198–1204

    Article  CAS  Google Scholar 

  • Shen J, He R, Wang L et al (2009) Biodegradation kinetics of picric acid by Rhodococcus sp. NJUST16 in batch reactors. J Hazard Mater 167:193–198

    Article  CAS  Google Scholar 

  • Soares A, Murto M, Guieysse B et al (2006) Biodegradation of nonylphenol in a continuous bioreactor at low temperatures and effects on the microbial population. Appl Microbiol Biotechnol 69:597–606

    Article  CAS  Google Scholar 

  • Sokol W, Migiro CLC (1996) Controlling a continuous stirred-tank bioreactor degrading phenol in the stability range. Chem Eng J 62:67–72

    CAS  Google Scholar 

  • Straube G, Hensel J, Niedan C et al (1990) Kinetic studies of phenol degradation by Rhodococcus sp. P1 batch cultivation. Antonie Van Leeuwenhoek 57:29–32

    Article  CAS  Google Scholar 

  • Suhaila YN, Rosfarizan M, Ahmad SA et al (2013) Nutrients and culture conditions requirements for the degradation of phenol by Rhodococcus UKMP-5M. J Environ Biol 33:635–643

    Google Scholar 

  • Techapun C, Poosaran N, Watanabe M et al (2003) Optimization of aeration and agitation rates to improve cellulase-free xylanase production by thermotolerant Streptomyces sp. Ab 106 and repeated fed-batch cultivation using agricultural waste. J Biosci Bioeng 95:298–301

    Article  CAS  Google Scholar 

  • Tziotzios G, Economou CHN, Lyberatos G et al (2007) Effect of the specific surface area and operating mode on biological phenol removal using packed bed reactors. Desalination 211:128–137

    Article  CAS  Google Scholar 

  • Varma RJ, Gaikwad BG (2010) Continuous phenol biodegradation in a simple packed bed bioreactor of calcium alginate-immobilized Candida tropicalis (NCIM 3556). World J Microb Biotechnol 26:805–809

    Article  CAS  Google Scholar 

  • Vogelaar JCT, Klapwijk A, Van Lier JB et al (2000) Temperature effects on the oxygen transfer rate between 20 and 55 °C. Water Resour 34:1037–1041

    CAS  Google Scholar 

  • Yan J, Jian PW, Jing B et al (2006) Phenol biodegradation by the yeast Candida tropicalis in the presence of m-cresol. Biochem Eng J 29:227–234

    Article  CAS  Google Scholar 

  • Yoong ET, Lant PA, Greenfield PF (1997) The influence of high phenol concentration on microbial growth. Water Sci Technol 36:75–79

    Article  CAS  Google Scholar 

  • Zhang X, Duan XJ, Tan WS (2010) Mechanism for the effect of agitation on the molecular weight of hyaluronic acid produced by Streptococcus zooepidemicus. Food Chem 119:1643–1646

    Article  CAS  Google Scholar 

  • Zhao G, Zhou L, Li Y et al (2009) Enhancement of phenol degradation using immobilized microorganisms and organic modified montmorillonite in a two-phase partitioning bioreactor. J Hazard Mater 169:402–410

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thank you to Ministry of Science, Technology and Innovation (MOSTI), Malaysia [Grant No: 3090104000(G)] for the support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arbakariya Bin Ariff.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaacob, N.S., Mohamad, R., Ahmad, S.A. et al. The influence of different modes of bioreactor operation on the efficiency of phenol degradation by Rhodococcus UKMP-5M. Rend. Fis. Acc. Lincei 27, 749–760 (2016). https://doi.org/10.1007/s12210-016-0567-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-016-0567-x

Keywords

Navigation