Skip to main content
Log in

Body size-related constraints on the movement behaviour of the arctic notostracan Lepidurus arcticus (Pallas, 1973) under laboratory conditions

  • Environmental Changes in Arctic
  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

The movement behaviour of individuals has long been acknowledged as a key determinant of species distribution in space and time. Information on benthic macroinvertebrates from aquatic habitats are still scant, however, and for polar species are virtually nonexistent. Here, the influence of body size on the movement behaviour of the arctic notostracan Lepidurus arcticus (Pallas) was examined under resource-free laboratory conditions. The mean step length, total path length and average speed were determined for specimens varying in body dry mass by six orders of magnitude. The scale-independent fractal dimension D was used to quantify movement path tortuosity. Among the different movement metrics considered, the body size of specimens scaled significantly only with path tortuosity; specifically, a negative relationship with a breakpoint was observed between individual body masses and the D values of the respective movement paths. The results are discussed considering similar results obtained for benthic crustaceans from temperate habitats. Additionally, their implications for future investigations explicitly considering temperature effects on movement behaviour are briefly considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19:716–723

    Article  Google Scholar 

  • Alemanno S, Mancinelli G, Basset A (2007a) Detritus processing in tri-trophic food chains: a modelling approach. Int Rev Hydrobiol 92:103–116. doi:10.1002/iroh.200510952

    Article  Google Scholar 

  • Alemanno S, Mancinelli G, Basset A (2007b) Effects of invertebrate patch use behaviour and detritus quality on reed leaf decomposition in aquatic systems: a modelling approach. Ecol Modell 205:492–506. doi:10.1016/j.ecolmodel.2007.03.009

    Article  Google Scholar 

  • Allema AB, Rossing WAH, van der Werf W, Heusinkveld BG, Bukovinszky T, Steingröver E, van Lenteren JC (2012) Effect of light quality on movement of Pterostichus melanarius (Coleoptera: Carabidae). J Appl Entomol 136:793–800. doi:10.1111/j.1439-0418.2012.01728.x

    Article  Google Scholar 

  • Allema B, van der Werf W, van Lenteren JC, Hemerik L, Rossing WAH (2014) Movement behaviour of the carabid beetle Pterostichus melanarius in crops and at a habitat interface explains patterns of population redistribution in the field. PLoS ONE 9:e115751. doi:10.1371/journal.pone.0115751

    Article  Google Scholar 

  • Angilletta MJ, Roth TC, Wilson RS, Niehaus AC, Ribeiro PL (2008) The fast and the fractalous: speed and tortuosity trade off in running ants. Funct Ecol 22:78–83. doi:10.1111/j.1365-2435.2007.01348.x

    Google Scholar 

  • Augusiak J, Van den Brink PJ (2015) Studying the movement behavior of benthic macroinvertebrates with automated video tracking. Ecol Evol 5:1563–1575. doi:10.1002/ece3.1425

    Article  Google Scholar 

  • Azovsky AI, Chertoprood MV, Kucheruk NV, Rybnikov PV, Sapozhnikov FV (2000) Fractal properties of spatial distribution of intertidal benthic communities. Mar Biol 136:581–590. doi:10.1007/s002270050718

    Article  Google Scholar 

  • Baird W (1852) Monograph of the family Branchipodidae, a family of crustaceans belonging to the Division Entomostraca, with a description of a new genus and species of the family, and two new species belonging to the Family Limnadiadae. Proc Zool Soc Lond 20:18–31

    Article  Google Scholar 

  • Barnes AD, Spey IK, Rohde L, Brose U, Dell AI (2015) Individual behaviour mediates effects of warming on movement across a fragmented landscape. Funct Ecol. doi:10.1111/1365-2435.12474

    Google Scholar 

  • Benhamou S, Poucet B (1995) A comparative analysis of spatial memory processes. Behav Processes 35:113–126

    Article  CAS  Google Scholar 

  • Borgstrøm R, Larsson P (1974) The first three instars of Lepidurus arcticus (Pallas), (Crustacea: Notostraca). Norw J Zool 22:45–52

    Google Scholar 

  • Bradshaw WE, Holzapfel CM (2010) Light, time, and the physiology of biotic response to rapid climate change in animals. Annu Rev Physiol 72:147–166. doi:10.1146/annurev-physiol-021909-135837

    Article  CAS  Google Scholar 

  • Brommer JE (2013) On between-individual and residual (co) variances in the study of animal personality: are you willing to take the “individual gambit”? Behav Ecol Sociobiol 67:1027–1032

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, Berlin

    Google Scholar 

  • Calizza E, Costantini ML, Rossi D, Pasquali V, Rossi L (2016) Stable isotopes and digital elevation models to study nutrient inputs in high-Arctic lakes. Rendiconti Lincei (this volume)

  • Carew TJ, Sahley CL (1986) Invertebrate learning and memory: from behavior to molecules. Annu Rev Neurosci 9:435–487. doi:10.1146/annurev.ne.09.030186.002251

    Article  CAS  Google Scholar 

  • Chapperon C, Seuront L (2011) Variability in the motion behaviour of intertidal gastropods: ecological and evolutionary perspectives. J Mar Biol Assoc UK 91:237–244. doi:10.1017/S002531541000007X

    Article  Google Scholar 

  • Chapperon C, Seuront L (2013) Temporal shifts in motion behaviour and habitat use in an intertidal gastropod. J Mar Biol Assoc UK 93:1025–1034. doi:10.1017/S0025315412000756

    Article  Google Scholar 

  • Christoffersen K (2001) Predation on Daphnia pulex by Lepidurus arcticus. Hydrobiologia 442:223–229. doi:10.1023/A:1017584928657

    Article  Google Scholar 

  • Crall JD, Ravi S, Mountcastle AM, Combes SA (2015) Bumblebee flight performance in cluttered environments: effects of obstacle orientation, body size and acceleration. J Exp Biol 218:2728–2737. doi:10.1242/jeb.121293

    Article  Google Scholar 

  • Demšar U, Buchin K, Cagnacci F, Safi K, Speckmann B, Van de Weghe N, Weiskopf D, Weibel R (2015) Analysis and visualisation of movement: an interdisciplinary review. Mov Ecol 3:1–24. doi:10.1186/s40462-015-0032-y

    Article  Google Scholar 

  • Einarsson Á (1979) Fáein orð um skötuorm (Lepidurus arcticus (Pallas)). Náttúrufræðingurinn 49:104–111

    Google Scholar 

  • Etzenhouser MJ, Owens MK, Spalinger DE, Murden SB (1998) Foraging behavior of browsing ruminants in a heterogeneous landscape. Landsc Ecol 13:55–64. doi:10.1023/A:1007947405749

    Article  Google Scholar 

  • Hessen DO, Rueness EK, Stabell M (2004) Circumpolar analysis of morphological and genetic diversity in the Notostracan Lepidurus arcticus. Hydrobiologia 519:73–84. doi:10.1023/B:HYDR.0000026486.16615.06

    Article  Google Scholar 

  • Holyoak M, Casagrandi R, Nathan R, Revilla E, Spiegel O (2008) Trends and missing parts in the study of movement ecology. Proc Natl Acad Sci USA 105:19060–19065. doi:10.1073/pnas.0800483105

    Article  CAS  Google Scholar 

  • Huey RB, Hertz PE (1984) Effects of body size and slope on acceleration of a lizard (Stellio stellio). J Exp Biol 110:113–123

    Google Scholar 

  • Ilany A, Eilam D (2008) Wait before running for your life: defensive tactics of spiny mice (Acomys cahirinus) in evading barn owl (Tyto alba) attack. Behav Ecol Sociobiol 62:923–933. doi:10.1007/s00265-007-0516-x

    Article  Google Scholar 

  • Jeanson R, Blanco S, Fournier R, Deneubourg JL, Fourcassie V, Theraulaz G (2003) A model of animal movements in a bounded space. J Theor Biol 225:443–451. doi:10.1016/s0022-5193(03)00277-7

    Article  Google Scholar 

  • Kissling WD, Pattemore DE, Hagen M (2014) Challenges and prospects in the telemetry of insects. Biol Rev 89:511–530. doi:10.1111/brv.12065

    Article  Google Scholar 

  • Klauser TR (2012) Population regulation in the tadpole shrimp Lepidurus arcticus. Department of Biology. Norwegian University of Science and Technology, Master Thesis, Trondheim, p 28

  • Lakka HK (2013) The ecology of a freshwater crustacean: Lepidurus arcticus (Brachiopoda; Notostraca) in a High Arctic region. M.Sc. Thesis, University of Helsinki, Helsinki

  • Lakka H-K (2015) Description of the male Lepidurus arcticus (Branchiopoda: Notostraca) and the potential role of cannibalism in defining male form and population sex ratio. J Crust Biol 35:319–329. doi:10.1163/1937240X-00002324

    Article  Google Scholar 

  • Lemoine NP, Burkepile DE (2012) Temperature-induced mismatches between consumption and metabolism reduce consumer fitness. Ecology 93:2483–2489. doi:10.1890/12-0375.1

    Article  Google Scholar 

  • Liedvogel M, Chapman BB, Muheim R, Åkesson S (2013) The behavioural ecology of animal movement: reflections upon potential synergies. Anim Migr 1:39–46. doi:10.2478/ami-2013-0002

    Google Scholar 

  • Longo E, Mancinelli G (2014) Size at the onset of maturity (SOM) revealed in length-weight relationships of brackish amphipods and isopods: an information theory approach. Estuar Coast Shelf Sci 136:119–128. doi:10.1016/j.ecss.2013.11.013

    Article  Google Scholar 

  • Longo E, Verschut T, Carrozzo L, Zotti M, Mancinelli G (2015) Inter-and intra-specific variation in movement behaviour of benthic macroinvertebrates from a transitional habitat: a laboratory experiment. Rend Lincei Sci Fis Nat. doi:10.1007/s12210-015-0475-5

    Google Scholar 

  • Mancinelli G (2009) On the importance of body size in the colonisation of ephemeral resource patches by vagile consumers. Rend Lincei Sci Fis Nat 20:139–151. doi:10.1007/s12210-009-0046-8

    Article  Google Scholar 

  • Mancinelli G (2010) Intraspecific, size-dependent variation in the movement behaviour of a brackish-water isopod: a resource-free laboratory experiment. Mar Freshw Behav Physiol 43:321–337. doi:10.1080/10236244.2010.512728

    Article  Google Scholar 

  • Mancinelli G, Sabetta L, Basset A (2005) Short-term patch dynamics of macroinvertebrate colonization on decaying reed detritus in a Mediterranean lagoon (Lake Alimini Grande, Apulia, SE Italy). Mar Biol 148:271–283. doi:10.1007/s00227-005-0091-5

    Article  Google Scholar 

  • Mancinelli G, Sabetta L, Basset A (2007) Colonization of ephemeral detrital patches by vagile macroinvertebrates in a brackish lake: a body size-related process? Oecologia 151:292–302. doi:10.1007/s00442-006-0586-x

    Article  Google Scholar 

  • Mazzola M, Viola AP, Lanconelli C, Vitale V (2016) Atmospheric observations at the Amundsen-nobile climate change tower in Ny-Ålesund, Svalbard. Rendiconti Lincei (this volume)

  • McDonald WR, St Clair CC (2004) The effects of artificial and natural barriers on the movement of small mammals in Banff National Park, Canada. Oikos 105:397–407. doi:10.1111/j.0030-1299.2004.12640.x

    Article  Google Scholar 

  • Mueller T, Fagan WF (2008) Search and navigation in dynamic environments—from individual behaviors to population distributions. Oikos 117:654–664. doi:10.1111/j.2008.0030-1299.16291.x

    Article  Google Scholar 

  • Muggeo VMR (2008) Segmented: an R package to fit regression models with broken-line relationships. R News 8:20–25

    Google Scholar 

  • Nams VO (2006) Detecting oriented movement of animals. Anim Behav 72:1197–1203. doi:10.1016/j.anbehav.2006.04.005

    Article  Google Scholar 

  • Nams VO, Bourgeois M (2004) Fractal analysis measures habitat use at different spatial scales: an example with American marten. Can J Zool 82:1738–1747. doi:10.1139/z04-167

    Article  Google Scholar 

  • Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, Smouse PE (2008) A movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci USA 105:19052–19059. doi:10.1073/pnas.0800375105

    Article  CAS  Google Scholar 

  • Nielsen UN, Wall DH (2013) The future of soil invertebrate communities in polar regions: different climate change responses in the Arctic and Antarctic? Ecol Lett 16:409–419. doi:10.1111/ele.12058

    Article  Google Scholar 

  • Pasquali V (2015) Locomotor activity rhythms in high arctic freshwater crustacean: Lepidurus arcticus (Branchiopoda; Notostraca). Biol Rhythm Res 46:453–458. doi:10.1080/09291016.2015.1004842

    Article  Google Scholar 

  • Pasquali V, Sbordoni V (2014) High variability in the expression of circadian rhythms in a cave beetle population. Biol Rhythm Res 45:925–939

    Article  Google Scholar 

  • Potenza L, Mancinelli G (2010) Body mass-related shift in movement behaviour in the isopod Lekanesphaera hookeri (Isopoda, Flabellifera): a laboratory study. Ital J Zool 77:354–361. doi:10.1080/11250000903449860

    Article  Google Scholar 

  • Prevedello JA, Forero-Medina G, Vieira MV (2010) Movement behaviour within and beyond perceptual ranges in three small mammals: effects of matrix type and body mass. J Anim Ecol 79:1315–1323. doi:10.1111/j.1365-2656.2010.01736.x

    Article  Google Scholar 

  • Richardson AJ (2008) In hot water: zooplankton and climate change. ICES J Mar Sci 65:279–295. doi:10.1093/icesjms/fsn028

    Article  Google Scholar 

  • Rogers DC (2001) Revision of the nearctic Lepidurus (Notostraca). J Crust Biol 21:991–1006. doi:10.1163/20021975-99990192

    Article  Google Scholar 

  • Sainte-Marie B (1991) A review of the reproductive bionomics of aquatic gammaridean amphipods: variation of life history traits with latitude, depth, salinity and superfamily. Hydrobiologia 223:189–227. doi:10.1007/bf00047641

    Article  Google Scholar 

  • Sassaman C (1991) Sex ratio variation in female-biased populations of Notostracans. Hydrobiologia 212:169–179. doi:10.1007/bf00025998

    Article  Google Scholar 

  • Scholander PF, Flagg W, Walters V, Irving L (1953) Climatic adaptation in arctic and tropical poikilotherms. Physiol Zool 26(1):67–92

    Article  Google Scholar 

  • Seuront L (2015) On uses, misuses and potential abuses of fractal analysis in zooplankton behavioral studies: a review, a critique and a few recommendations. Phys A 432:410–434. doi:10.1016/j.physa.2015.03.007

    Article  Google Scholar 

  • Seuront L, Brewer M, Strickler JR (2004) Quantifying zooplankton swimming behavior: the question of scale. In: Seuront L, Strutton PG (eds) Handbook of scaling methods in aquatic ecology: measurement, analysis, simulation. CRC Press, Boca Raton, pp 333–360

    Google Scholar 

  • Sih A (2013) Understanding variation in behavioural responses to human-induced rapid environmental change: a conceptual overview. Anim Behav 85:1077–1088. doi:10.1016/j.anbehav.2013.02.017

    Article  Google Scholar 

  • Spilmont N, Seuront L, Meziane T, Welsh DT (2011) There’s more to the picture than meets the eye: sampling microphytobenthos in a heterogeneous environment. Estuar Coast Shelf Sci 95:470–476. doi:10.1016/j.ecss.2011.10.021

    Article  CAS  Google Scholar 

  • Sugiura N (1978) Further analysis of the data by Akaike’s information criterion and the finite corrections. Commun Stat A-Theor A7:13–26. doi:10.1080/03610927808827599

    Article  Google Scholar 

  • Tierney AJ, Andrews K (2013) Spatial behavior in male and female crayfish (Orconectes rusticus): learning strategies and memory duration. Anim Cogn 16:23–34. doi:10.1007/s10071-012-0547-1

    Article  Google Scholar 

  • Tomsic D, Romano A (2013) A multidisciplinary approach to learning and memory in the crab Neohelice (Chasmagnathus) granulata. In: Menzel R, Benjamin PR (eds) Invertebrate learning and memory. Academic Press, Amsterdam, pp 337–355

    Chapter  Google Scholar 

  • Tsuda A (1995) Fractal distribution of an oceanic copepod Neocalanus cristatus in the subarctic pacific. J Oceanogr 51:261–266. doi:10.1007/BF02285164

    Article  Google Scholar 

  • Turchin P (1996) Fractal analyses of animal movement: a critique. Ecology 77:2086–2090. doi:10.2307/2265702

    Article  Google Scholar 

  • Ugolini A, Pasquali V, Baroni D, Ungherese G (2012) Behavioural responses of the supralittoral amphipod Talitrus saltator (Montagu) to trace metals contamination. Ecotoxicology 21:139–147. doi:10.1007/s10646-011-0773-3

    Article  CAS  Google Scholar 

  • Vannini M, Cannicci S (1995) Homing behaviour and possible cognitive maps in crustacean decapods. J Exp Mar Biol Ecol 193:67–91. doi:10.1016/0022-0981(95)00111-5

    Article  Google Scholar 

  • With KA (1994a) Ontogenic shifts in how grasshoppers interact with landscape structure - an analysis of movement patterns. Funct Ecol 8:477–485. doi:10.2307/2390072

    Article  Google Scholar 

  • With KA (1994b) Using fractal analysis to assess how species perceive landscape structure. Landsc Ecol 9:25–36. doi:10.1007/BF00135076

    Article  Google Scholar 

  • With KA, Cadaret SJ, Davis C (1999) Movement responses to patch structure in experimental fractal landscapes. Ecology 80:1340–1353. doi:10.2307/177079

    Article  Google Scholar 

  • Wojtasik B, Bryłka-Wołk M (2010) Reproduction and genetic structure of a freshwater crustacean Lepidurus arcticus from Spitsbergen. Pol Polar Res 31:33–44. doi:10.4202/ppres.2010.03

    Article  Google Scholar 

  • Wong BBM, Candolin U (2015) Behavioral responses to changing environments. Behav Ecol 26:665–673. doi:10.1093/beheco/aru183

    Article  Google Scholar 

Download references

Acknowledgments

Permits to carry out field research in Ny-Ålesund delivered by the Governor of Svalbard ref. 2014/00729-2 a.512 (Fieldwork 2014, RIS-ID 10011) to V. P. are acknowledged. This study was supported by Consiglio Nazionale delle Ricerche, Confucio Institute—SAPIENZA Università di Roma, 6° Comunità Montana del Velino. The help and co-operation of the officers and persons of the CNR D.T.A. Department and Italian Arctic Base “Dirigibile Italia” (in the person of E. Brugnoli, V. Vitale, A. Viola and E. Liberatori) is gratefully acknowledged. Thanks also to the staff of Kings Bay Marine Laboratory and to Steve Coulson for his useful advices. Financial support to G. M. was provided by FUR 2014–2015 funds. Movement analyses were carried out using the infrastructures of the Biodiversity Organization and Ecosystem Functioning (BIOforIU)—node1 UNISALENTO—PON project code PONa3_00025. The authors thank Giuseppe Alfonso for insightful discussions on the ecology and biology of notostracans, and two anonymous reviewers for helpful comments that greatly improved an early version of the manuscript. This is contribution number 1 of the BIOforIU facility “Laboratorio studi su metabolismo e comportamento organismi acquatici” and is dedicated to Sofia Mancinelli, thy eternal summer shall not fade.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Mancinelli.

Additional information

This peer-reviewed article is a result of the multi and interdisciplinary research activities based at the Arctic Station “Dirigibile Italia”, coordinated by the “Dipartimento Scienze del Sistema Terra e Tecnologie per l’Ambiente” of the National Council of Research of Italy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mancinelli, G., Pasquali, V. Body size-related constraints on the movement behaviour of the arctic notostracan Lepidurus arcticus (Pallas, 1973) under laboratory conditions. Rend. Fis. Acc. Lincei 27 (Suppl 1), 207–215 (2016). https://doi.org/10.1007/s12210-016-0512-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-016-0512-z

Keywords

Navigation