Skip to main content
Log in

Sequential Growth of Cs3Bi2I9/BiVO4 Direct Z-Scheme Heterojunction for Visible-Light-Driven Photocatalytic CO2 Reduction

  • Research Article
  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

The high exciton binding energy and lack of a positive oxidation band potential restrict the photocatalytic CO2 reduction efficiency of lead-free Bi-based halide perovskites Cs3Bi2X9 (X = Br, I). In this study, a sequential growth method is presented to prepare a visible-light-driven (λ > 420 nm) Z-scheme heterojunction photocatalyst composed of BiVO4 nanocrystals decorated on a Cs3Bi2I9 nanosheet for photocatalytic CO2 reduction coupled with water oxidation. The Cs3Bi2I9/BiVO4 Z-scheme heterojunction photocatalyst is stable in the gas–solid photocatalytic CO2 reduction system, demonstrating a high visible-light-driven photocatalytic CO2-to-CO production rate of 17.5 μmol/(g·h), which is approximately three times that of pristine Cs3Bi2I9. The high efficiency of the Cs3Bi2I9/BiVO4 heterojunction was attributed to the improved charge separation in Cs3Bi2I9. Moreover, the Z-scheme charge-transfer pathway preserves the negative reduction potential of Cs3Bi2I9 and the positive oxidation potential of BiVO4. This study offers solid evidence of constructing Z-scheme heterojunctions to improve the photocatalytic performance of lead-free halide perovskites and would inspire more ideas for developing lead-free halide perovskite photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fang S, Rahaman M, Bharti J et al (2023) Photocatalytic CO2 reduction. Nat Rev Meth Primers 3:61

    Article  Google Scholar 

  2. White JL, Baruch MF, Pander Iii JE et al (2015) Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. Chem Rev 115(23):12888–12935

    Article  Google Scholar 

  3. Yao S, He J, Gao F et al (2023) Highly selective semiconductor photocatalysis for CO2 reduction. J Mater Chem A 11(24):12539–12558

    Article  Google Scholar 

  4. Chen S, Yin H, Liu P et al (2023) Stabilization and performance enhancement strategies for halide perovskite photocatalysts. Adv Mater 35(6):e2203836

    Article  Google Scholar 

  5. Chen J, Dong C, Idriss H et al (2020) Halide perovskites: metal halide perovskites for solar-to-chemical fuel conversion (adv. energy mater. 13/2020). Adv Energy Mater 10(13):1902433

  6. Huo H, Wu F, Kan E et al (2023) Overall photocatalytic CO2 reduction over heterogeneous semiconductor photocatalysts. Chemistry 29(40):e202300658

    Article  Google Scholar 

  7. Kojima A, Teshima K, Shirai Y et al (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(17):6050–6051

    Article  Google Scholar 

  8. Shi D, Adinolfi V, Comin R et al (2015) Solar cells. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347(6221):519–522

  9. Yang Y, Yan Y, Yang M et al (2015) Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal. Nat Commun 6:7961

    Article  Google Scholar 

  10. Liu J, Song K, Shin Y et al (2019) Light-induced self-assembly of cubic CsPbBr3 perovskite nanocrystals into nanowires. Chem Mater 31(17):6642–6649

    Article  Google Scholar 

  11. De Wolf S, Holovsky J, Moon SJ et al (2014) Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J Phys Chem Lett 5(6):1035–1039

    Article  Google Scholar 

  12. Fu Y, Zhu H, Chen J et al (2019) Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat Rev Mater 4(3):169–188

    Article  Google Scholar 

  13. Kovalenko MV, Protesescu L, Bodnarchuk MI (2017) Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358(6364):745–750

    Article  Google Scholar 

  14. Chen J, Luo Z, Fu Y et al (2019) Tin(IV)-tolerant vapor-phase growth and photophysical properties of aligned cesium tin halide perovskite (CsSnX3; X = Br, I) nanowires. ACS Energy Lett 4(5):1045–1052

    Article  Google Scholar 

  15. Jin Z, Zhang Z, Xiu J et al (2020) A critical review on bismuth and antimony halide based perovskites and their derivatives for photovoltaic applications: recent advances and challenges. J Mater Chem A 8(32):16166–16188

    Article  Google Scholar 

  16. Kumar D, Kaur J, Mohanty PP et al (2021) Recent advancements in nontoxic halide perovskites: beyond divalent composition space. ACS Omega 6(49):33240–33252

    Article  Google Scholar 

  17. Shi M, Yang H, Zhao Z et al (2023) Bismuth-based semiconductors applied in photocatalytic reduction processes: fundamentals, advances and future perspectives. Chem Commun 59(29):4274–4287

    Article  Google Scholar 

  18. Zhou B, Xu S, Wu L et al (2023) Strain-engineering of mesoporous Cs3Bi2 Br9/BiVO4 S-scheme heterojunction for efficient CO2 photoreduction. Small 19(29):e2302058

    Article  Google Scholar 

  19. Liu ZL, Liu RR, Mu YF et al (2021) in situ construction of lead-free perovskite direct Z-scheme heterojunction Cs3Bi2I9/Bi2WO6 for efficient photocatalysis of CO2 reduction. Sol RRL 5(3):2000691

    Article  Google Scholar 

  20. Chen G, Wang P, Wu Y et al (2020) Lead-free halide perovskite Cs3Bi2xSb2–2xI9 (x ≈ 0.3) possessing the photocatalytic activity for hydrogen evolution comparable to that of (CH3NH3)PbI3. Adv Mater 32(39):e2001344

  21. Dai Y, Tüysüz H (2019) Lead-free Cs3Bi2Br9 perovskite as photocatalyst for ring-opening reactions of epoxides. Chemsuschem 12(12):2587–2592

    Article  Google Scholar 

  22. Zhang W, Mohamed AR, Ong WJ (2020) Z-scheme photocatalytic systems for carbon dioxide reduction: where are we now? Angew Chem Int Ed Engl 59(51):22894–22915

    Article  Google Scholar 

  23. Zhang Z, Li L, Jiang Y et al (2022) Step-scheme photocatalyst of CsPbBr3 quantum dots/BiOBr nanosheets for efficient CO2 photoreduction. Inorg Chem 61(7):3351–3360

    Article  Google Scholar 

  24. Cooper JK, Gul S, Toma FM et al (2014) Electronic structure of monoclinic BiVO4. Chem Mater 26(18):5365–5373

    Article  Google Scholar 

  25. Guan X, Tian L, Zhang Y et al (2023) Photocatalytic water splitting on BiVO4: balanced charge-carrier consumption and selective redox reaction. Nano Res 16(4):4568–4573

    Article  Google Scholar 

  26. Bresolin BM, Balayeva NO, Granone LI et al (2020) Anchoring lead-free halide Cs3Bi2I9 perovskite on UV100-TiO2 for enhanced photocatalytic performance. Sol Energy Mater Sol Cells 204:110214

    Article  Google Scholar 

  27. Feng YX, Dong GX, Su K et al (2022) Self-template-oriented synthesis of lead-free perovskite Cs3Bi2I9 nanosheets for boosting photocatalysis of CO2 reduction over Z-scheme heterojunction Cs3Bi2I9/CeO2. J Energy Chem 69:348–355

    Article  Google Scholar 

  28. Wang X, Li G, Ding J et al (2012) Facile synthesis and photocatalytic activity of monoclinic BiVO4 micro/nanostructures with controllable morphologies. Mater Res Bull 47(11):3814–3818

    Article  Google Scholar 

  29. Zhao D, Wang Y, Dong CL et al (2021) Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nat Energy 6(4):388–397

    Article  Google Scholar 

  30. Wang Y, Chen D, Zhang J et al (2022) Charge relays via dual carbon-actions on nanostructured BiVO4 for high performance photoelectrochemical water splitting. Adv Funct Materials 32(13):2112738

    Article  Google Scholar 

  31. Li M, Xu S, Wu L et al (2022) Perovskite Cs3Bi2I9 hexagonal prisms with ordered geometry for enhanced photocatalytic hydrogen evolution. ACS Energy Lett 7(10):3370–3377

    Article  Google Scholar 

  32. Zhang L, Liu C, Wang L et al (2018) Pressure-induced emission enhancement, band-gap narrowing, and metallization of halide perovskite Cs3Bi2I9. Angew Chem Int Ed Engl 57(35):11213–11217

    Article  Google Scholar 

  33. Wu JM, Chen Y, Pan L et al (2018) Multi-layer monoclinic BiVO4 with oxygen vacancies and V4+ species for highly efficient visible-light photoelectrochemical applications. Appl Catal B Environ 221:187–195

    Article  Google Scholar 

  34. Cao F, Hu Z, Yan T et al (2023) A dual-functional perovskite-based photodetector and memristor for visual memory. Adv Mater 35(44):e2304550

    Article  Google Scholar 

  35. Dey KK, Gahlawat S, Ingole PP (2019) BiVO4 optimized to nano-worm morphology for enhanced activity towards photoelectrochemical water splitting. J Mater Chem A 7(37):21207–21221

    Article  Google Scholar 

  36. Yue X, Cheng L, Fan J et al (2022) 2D/2D BiVO4/CsPbBr3 S-scheme heterojunction for photocatalytic CO2 reduction: insights into structure regulation and Fermi level modulation. Appl Catal B Environ 304:120979

    Article  Google Scholar 

  37. Li L, Ye G, Luo T et al (2022) Centimeter-sized stable zero-dimensional Cs3Bi2I9 single crystal for mid-infrared lead-free perovskite photodetector. J Phys Chem C 126(7):3646–3652

    Article  Google Scholar 

  38. Wei T, Zhu YN, An X et al (2019) Defect modulation of Z-scheme TiO2/Cu2O photocatalysts for durable water splitting. ACS Catal 9(9):8346–8354

    Article  Google Scholar 

  39. Hu Y, Hao X, Cui Z et al (2020) Enhanced photocarrier separation in conjugated polymer engineered CdS for direct Z-scheme photocatalytic hydrogen evolution. Appl Catal B Environ 260:118131

    Article  Google Scholar 

  40. Kumar Y, Kumar R, Raizada P et al (2021) Novel Z-Scheme ZnIn2S4-based photocatalysts for solar-driven environmental and energy applications: progress and perspectives. J Mater Sci Technol 87:234–257

    Article  Google Scholar 

  41. Hao X, Cui Z, Zhou J et al (2018) Architecture of high efficient zinc vacancy mediated Z-scheme photocatalyst from metal-organic frameworks. Nano Energy 52:105–116

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Key R&D Plan Project (No. 2022YFA1505000), Prospective Basic Research Projects of CNPC (Nos. 2021DQ03(2022Z-29), 2022DJ5406, 2022DJ5407, 2022DJ5408, 2022DJ4507, and TGRI-2021-1), the Natural Science Foundation of Shaanxi Province (No. 2022JQ-078), the Natural Science Foundation of China (No. 52302308), the Outstanding Youth Science Foundation Project of the National Natural Science Foundation of China (Overseas) (No. GYKP033) and the Qinchuangyuan Cited High-Level Innovative and Entrepreneurial Talents Project (No. QCYRCXM-2022-143).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Chen.

Ethics declarations

Conflict of interest

All authors declare that there is no competing interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8798 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Du, H., Li, L. et al. Sequential Growth of Cs3Bi2I9/BiVO4 Direct Z-Scheme Heterojunction for Visible-Light-Driven Photocatalytic CO2 Reduction. Trans. Tianjin Univ. 29, 462–472 (2023). https://doi.org/10.1007/s12209-023-00376-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-023-00376-9

Keywords

Navigation