Skip to main content
Log in

Smart Manipulation of Gas Bubbles in Harsh Environments Via a Fluorinert-Infused Shape-Gradient Slippery Surface

  • Research Article
  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

Fundamental research and practical applications have examined the manipulation of gas bubbles on open surfaces in low-surface-tension, high-pressure, and high-acidity, -alkalinity, or -salinity environments. However, to the best of our knowledge, efficient and general approaches to achieve the smart manipulation of gas bubbles in these harsh environments are limited. Herein, a Fluorinert-infused shape-gradient slippery surface (FSSS) that could effectively regulate the behavior of gas bubbles in harsh environments was successfully fabricated. The unique capability of FSSS was mainly attributed to the properties of Fluorinert, which include chemical inertness and incompressibility. The shape-gradient morphology of FSSS could induce asymmetric driving forces to move gas bubbles directionally on open surfaces. Factors influencing gas bubble transport on FSSS, such as the apex angle of the slippery surface and the surface tension of the aqueous environment, were carefully investigated, and large apex angles were found to result in large initial transport velocities and short transport distances. Lowering the surface tension of the aqueous environment is unfavorable to bubble transport. Nevertheless, FSSS could transport gas bubbles in aqueous environments with surface tensions as low as 28.5 ± 0.1 mN/m, which is lower than that of many organic solvents (e.g., formamide, ethylene glycol, and dimethylformamide). In addition, FSSS could also realize the facile manipulation of gas bubbles in various aqueous environments, e.g., high pressure (~ 6.8 atm), high acidity (1 mol/L H2SO4), high alkalinity (1 mol/L NaOH), and high salinity (1 mol/L NaCl). The current findings provide a source of knowledge and inspiration for studies on bubble-related interfacial phenomena and contribute to scientific and technological developments for controllable bubble manipulation in harsh environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sarkar MSK, Donne ASW, Evans GM (2010) Hydrogen bubble flotation of silica. Adv Powder Technol 21:412–418

    Article  Google Scholar 

  2. Calgaroto S, Wilberg KQ, Rubio J (2014) On the nanobubbles interfacial properties and future applications in flotation. Miner Eng 60:33–40. https://doi.org/10.1016/j.mineng.2014.02.002

    Article  Google Scholar 

  3. Patankar NA (2010) Supernucleating surfaces for nucleate boiling and dropwise condensation heat transfer. Soft Matter 6(8):1613–1620. https://doi.org/10.1039/b923967g

    Article  MathSciNet  Google Scholar 

  4. Zou JT, Zhang HG, Guo ZJ et al (2018) Surface nanobubbles nucleate liquid boiling. Langmuir 34(46):14096–14101. https://doi.org/10.1021/acs.langmuir.8b03290

    Article  Google Scholar 

  5. Liu ZG, Gao XH, Du LX et al (2015) Corrosion behavior of low-alloy steel with martensite/ferrite microstructure at vapor-saturated CO2 and CO2-saturated brine conditions. Appl Surf Sci 351:610–623. https://doi.org/10.1016/j.apsusc.2015.06.006

    Article  Google Scholar 

  6. López DA, Pérez T, Simison SN (2003) The influence of microstructure and chemical composition of carbon and low alloy steels in CO2 corrosion. A state-of-the-art appraisal. Mater Des 24(8):561–575. https://doi.org/10.1016/s0261-3069(03)00158-4

    Article  Google Scholar 

  7. Liu Y, Cheng H, Lyu M et al (2014) Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J Am Chem Soc 136:15670–15675

    Article  Google Scholar 

  8. Bak T, Nowotny J, Rekas M et al (2002) Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int J Hydrog Energy 27(10):991–1022. https://doi.org/10.1016/s0360-3199(02)00022-8

    Article  Google Scholar 

  9. Zhang CH, Cao MY, Ma HY et al (2017) Morphology-control strategy of the superhydrophobic poly(methyl methacrylate) surface for efficient bubble adhesion and wastewater remediation. Adv Funct Mater 27(43):1702020. https://doi.org/10.1002/adfm.201702020

    Article  Google Scholar 

  10. Song JL, Liu ZA, Wang XY et al (2019) High-efficiency bubble transportation in an aqueous environment on a serial wedge-shaped wettability pattern. J Mater Chem A 7(22):13567–13576. https://doi.org/10.1039/c9ta02095k

    Article  Google Scholar 

  11. Ju J, Zheng YM, Jiang L (2014) Bioinspired one-dimensional materials for directional liquid transport. Acc Chem Res 47(8):2342–2352. https://doi.org/10.1021/ar5000693

    Article  Google Scholar 

  12. Cao MY, Jiang L (2016) Superwettability integration: concepts, design and applications. Surf Innov 4(4):180–194. https://doi.org/10.1680/jsuin.16.00004

    Article  Google Scholar 

  13. Seymour RS, Hetz SK (2011) The diving bell and the spider: the physical gill of Argyroneta aquatica. J Exp Biol 214(13):2175–2181. https://doi.org/10.1242/jeb.056093

    Article  Google Scholar 

  14. Kehl S, Dettner K (2009) Surviving submerged-setal tracheal gills for gas exchange in adult rheophilic diving beetles. J Morphol 270(11):1348–1355. https://doi.org/10.1002/jmor.10762

    Article  Google Scholar 

  15. Flynn MR, Bush JWM (2008) Underwater breathing: the mechanics of plastron respiration. J Fluid Mech 608:275–296. https://doi.org/10.1017/s0022112008002048

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen X, Wu YC, Su B et al (2012) Terminating marine methane bubbles by superhydrophobic sponges. Adv Mater 24(43):5884–5889. https://doi.org/10.1002/adma.201202061

    Article  Google Scholar 

  17. Ma R, Wang JM, Yang ZJ et al (2015) Bioinspired gas bubble spontaneous and directional transportation effects in an aqueous medium. Adv Mater 27(14):2384–2389. https://doi.org/10.1002/adma.201405087

    Article  Google Scholar 

  18. Yu CM, Cao MY, Dong ZC et al (2016) Spontaneous and directional transportation of gas bubbles on superhydrophobic cones. Adv Funct Mater 26(19):3236–3243. https://doi.org/10.1002/adfm.201505234

    Article  Google Scholar 

  19. Duan JA, Dong XR, Yin K et al (2018) A hierarchical superaerophilic cone: robust spontaneous and directional transport of gas bubbles. Appl Phys Lett 113(20):203704. https://doi.org/10.1063/1.5054623

    Article  Google Scholar 

  20. Yu CM, Cao MY, Dong ZC et al (2016) Aerophilic electrode with cone shape for continuous generation and efficient collection of H2 bubbles. Adv Funct Mater 26(37):6830–6835. https://doi.org/10.1002/adfm.201601960

    Article  Google Scholar 

  21. Zheng QS, Yu Y, Zhao ZH (2005) Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces. Langmuir 21(26):12207–12212. https://doi.org/10.1021/la052054y

    Article  Google Scholar 

  22. Cao MY, Li Z, Ma HY et al (2018) Is superhydrophobicity equal to underwater superaerophilicity: regulating the gas behavior on superaerophilic surface via hydrophilic defects. ACS Appl Mater Interfaces 10(24):20995–21000. https://doi.org/10.1021/acsami.8b05410

    Article  Google Scholar 

  23. Tuteja A, Choi W, Mabry JM et al (2008) Robust omniphobic surfaces. Proc Natl Acad Sci U S A 105(47):18200–18205. https://doi.org/10.1073/pnas.0804872105

    Article  Google Scholar 

  24. Yu C, Zhu C, Li K et al (2017) Manipulating bubbles in aqueous environment via a lubricant-infused slippery surface. Adv Funct Mater 27:1701605

    Article  Google Scholar 

  25. Zhang CH, Zhang B, Ma HY et al (2018) Bioinspired pressure-tolerant asymmetric slippery surface for continuous self-transport of gas bubbles in aqueous environment. ACS Nano 12(2):2048–2055. https://doi.org/10.1021/acsnano.8b00192

    Article  Google Scholar 

  26. Xiao X, Zhang C, Ma H et al (2019) Bioinspired slippery cone for controllable manipulation of gas bubbles in low-surface-tension environment. ACS Nano 13:4083–4090

    Article  Google Scholar 

  27. Deng X, Mammen L, Butt HJ et al (2012) Candle soot as a template for a transparent robust superamphiphobic coating. Science 335(6064):67–70. https://doi.org/10.1126/science.1207115

    Article  Google Scholar 

  28. Kovalchuk NM, Trybala A, Starov V et al (2014) Fluoro- vs hydrocarbon surfactants: why do they differ in wetting performance? Adv Colloid Interface Sci 210:65–71. https://doi.org/10.1016/j.cis.2014.04.003

    Article  Google Scholar 

  29. Boutevin G, Tiffes D, Loubat C et al (2012) New fluorinated surfactants based on vinylidene fluoride telomers. J Fluorine Chem 134:77–84

    Article  Google Scholar 

  30. Shi C, Cui X, Xie L et al (2015) Measuring forces and spatiotemporal evolution of thin water films between an air bubble and solid surfaces of different hydrophobicity. ACS Nano 9(1):95–104. https://doi.org/10.1021/nn506601j

    Article  Google Scholar 

  31. Ducker WA (2009) Contact angle and stability of interfacial nanobubbles. Langmuir 25(16):8907–8910. https://doi.org/10.1021/la902011v

    Article  Google Scholar 

  32. Ju J, Bai H, Zheng YM et al (2012) A multi-structural and multi-functional integrated fog collection system in cactus. Nat Commun 3:1247. https://doi.org/10.1038/ncomms2253

    Article  Google Scholar 

  33. Prakash M, Quere D, Bush JWM (2008) Surface tension transport of prey by feeding shorebirds: the capillary ratchet. Science 320(5878):931–934. https://doi.org/10.1126/science.1156023

    Article  Google Scholar 

  34. Zheng Y, Bai H, Huang Z et al (2010) Directional water collection on wetted spider silk. Nature 463:640–643

    Article  Google Scholar 

  35. Li K, Ju J, Xue ZX et al (2013) Structured cone arrays for continuous and effective collection of micron-sized oil droplets from water. Nat Commun 4:2276. https://doi.org/10.1038/ncomms3276

    Article  Google Scholar 

  36. Loudet JC (2004) Stokes drag on a sphere in a nematic liquid crystal. Science 306(5701):1525. https://doi.org/10.1126/science.1102864

    Article  Google Scholar 

  37. Masliyah J, Jauhari R, Gray M (1994) Drag coefficients for air bubbles rising along an inclined surface. Chem Eng Sci 49(12):1905–1911. https://doi.org/10.1016/0009-2509(94)80075-8

    Article  Google Scholar 

  38. Antonow GN (1907) Sur la tension superficielle des solutions dans la zone critique. J Chim Phys 5:364–371. https://doi.org/10.1051/jcp/1907050364

    Article  Google Scholar 

  39. Antonoff G (1942) On the validity of Antonoff’s rule. J Phys Chem 46(4):497–499. https://doi.org/10.1021/j150418a009

    Article  Google Scholar 

  40. Li YX, Li JX, Yang X et al (2019) Preparation of CeO2-modified Mg(Al)O-supported Pt–Cu alloy catalysts derived from hydrotalcite-like precursors and their catalytic behavior for direct dehydrogenation of propane. Trans Tianjin Univ 25(2):169–184. https://doi.org/10.1007/s12209-018-0156-4

    Article  MathSciNet  Google Scholar 

  41. Kong DC, Qi J, Liu DY et al (2019) Ni-doped BiVO4 with V4+ species and oxygen vacancies for efficient photoelectrochemical water splitting. Trans Tianjin Univ 25(4):340–347. https://doi.org/10.1007/s12209-019-00202-1

    Article  Google Scholar 

  42. Li ZH, Zhang LJ, Zhao KC et al (2018) Ni/ZrO2 catalysts synthesized via urea combustion method for CO2 methanation. Trans Tianjin Univ 24(5):471–479. https://doi.org/10.1007/s12209-018-0126-x

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Beihang University’s Young Talents (No. KG16045301), the National Natural Science Foundation (No. 21805204), Tianjin Natural Science Foundation (No. 19JCQNJC05100), and Young Elite Scientists Sponsorship Program by Tianjin (No. TJSQNTJ-2018-17).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cunming Yu or Moyuan Cao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2862 kb)

Supplementary material 2 (MOV 4800 kb)

Supplementary material 3 (MOV 9153 kb)

Supplementary material 4 (MOV 2191 kb)

Supplementary material 5 (MOV 3152 kb)

Supplementary material 6 (MOV 2266 kb)

Supplementary material 7 (MOV 863 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Zhang, C., Liu, M. et al. Smart Manipulation of Gas Bubbles in Harsh Environments Via a Fluorinert-Infused Shape-Gradient Slippery Surface. Trans. Tianjin Univ. 26, 441–449 (2020). https://doi.org/10.1007/s12209-020-00263-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-020-00263-7

Keywords

Navigation