Skip to main content
Log in

Destructive and nondestructive remaining fatigue life prediction methods of metals: a review

  • Review Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Metals’ remaining fatigue life (RFL) forecast is considered to be an overly complicated process among engineers in practical applications, especially since a fast and acceptable level of safety operation and trust assessment are needed to avoid fatigue risks in worksites. The internal damage that the material suffers under fatigue stress results in invisible changes in the microstructure, which may lead to its failure below the intended design life of the material. Therefore, predictive calculations of RFL are very important for personnel safety and design quality. Here, the RFL prediction models and material-dependent characteristic components are reviewed via two approaches: the destructive (DT) and nondestructive (NDT) methods. Typical measurements and data associated with their relationships, such as stress, strain and effective contact at different stages of fatigue failure were explored. Moreover, the effectiveness of the DT and NDT evaluation methods was compared to obtain the information and description of the material fatigue response. Subsequently, the best models were selected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

Crack length (m)

P :

Baseline likelihood

σ i :

Stress level (N/m2)

S c :

The crack area is determined from the binary image

σ u :

Ultimate tensile stress (N/m2)

S t :

The total area of the view

n i :

Cyclic number of the respective stress level

A, B, α :

Constants obtained under different strain amplitude cycles

N i :

Fatigue life corresponds to the current stress level

ΔK :

Stress intensity factor range (MPa \(\sqrt {} {\rm{m}}\))

da/dN :

Crack growth rate (m/cycle)

W :

Specimen width

D :

Damage parameter (damage level)

m NF :

Mean value of variation for fatigue failure cycles

C, m :

Parameters for damage growth

v NF :

Coefficient of variation for fatigue failure cycles

N :

Number of fatigue cycles

m Nn :

Mean value of variation for the cycles of the applied load

N f :

Total number of fatigue cycles to failure

v Nn :

Coefficient of variation for the cycles of the applied load

S :

The ratio of the crack area to the specific area

R θ :

Change in metal temperature per cycle (C°/cycle)

R r :

Thermal response of metal

P f :

Corresponding to failure probability

β :

Probability of failure

β :

Nonlinearity parameter

A 1 :

Fundamental displacement signals

β e :

Elastic nonlinearity parameter

A 2 :

Second-harmonic displacement signals

A e3 :

Huang coefficient of the third order

References

  1. F. C. Campbell, Fatigue and Fracture - Understanding the Basics, ASM International (2012).

  2. A. Roya, P. Palit, S. Das and G. Mukhyopadyay, Investigation of torsional fatigue failure of a centrifugal pump shaft, Engineering Failure Analysis, 112 (2020) 104511.

    Article  Google Scholar 

  3. J. Li, Z.-P. Zhang, Q. Sun, C.-W. Li and Y.-J. Qiao, A new multiaxial fatigue damage model for various metallic materials under the combination of tension and torsion loadings, International Journal of Fatigue, 31 (2009) 776–778.

    Article  Google Scholar 

  4. S. M. Moghaddam, J. A. R. Bomidi, F. Sadeghi, N. Weinzapfel and A. Liebel, Effects of compressive stresses on torsional fatigue, Tribology International, 77 (2014) 196–210.

    Article  Google Scholar 

  5. M. Meyers and K. Chawla, Mechanical Behavior of Materials, Second Edition, Cambidge University Press (2008).

  6. A. D. Hassan, A. A. Nassar and M. A. Mareer, Comparative and assessment study of torsional fatigue life for different types of steel, SN Applied Sciences, 1 (2019) 1359.

    Article  Google Scholar 

  7. H. Liu, H. Wang, Z. Huanga, Q. Wanga and Q. Chen, Comparative study of very high cycle tensile and torsional fatigue in TC17 titanium alloy, International Journal of Fatigue, 139 (2020) 105720.

    Article  Google Scholar 

  8. N. W. Sachs, Understanding the surface features of fatigue fractures: How they describe the failure cause and the failure history, Journal of Failure Analysis and Prevention, 5 (2) (2005) 11–15.

    Article  Google Scholar 

  9. D. McClaflin and A. Fatemi, Torsional deformation and fatigue of hardened steel including mean stress and stress gradient effects, International Journal of Fatigue, 26 (2004) 773–784.

    Article  Google Scholar 

  10. O. Miller, The fatigue limit and its elimination, Fatigue Fract. Eng. Mater Struct., 22 (1999) 545–557, https://doi.org/10.1046/j.1460-2695.1999.00204.x.

    Article  Google Scholar 

  11. Y. Liu, C. Deng, B. Gong, Y. He and D. Wang, Fatigue limit prediction of notched plates using the zero-point effective notch stress method, International Journal of Fatigue, 151 (2021) 106392.

    Article  Google Scholar 

  12. M. Mehdizadeh, A. Haghshenas and M. M. Khonsari, In-situ technique for fatigue life prediction of metals based on temperature evolution, International Journal of Mechanical Sciences, 192 (2021) 106113, https://doi.org/10.1016/j.ijmecsci.2020.106113.

    Article  Google Scholar 

  13. T. T. Nguyen, H. M. Heo, J. Park, S. H. Nahm and U. B. Beak, Fracture properties and fatigue life assessment of API X70 pipeline steel under the effect of an environment containing hydrogen, Journal of Mechanical Science and Technology, 35 (4) (2021) 1445–1455.

    Article  Google Scholar 

  14. K. Guguloth, S. Sivaprasad, D. Chakrabarti and S. Tarafder, Low-cyclic fatigue behavior of modified 9Cr−1Mo steel at elevated temperature, Materials Science and Engineering: A, 604 (16) (2014) 196–206.

    Article  Google Scholar 

  15. Z. Liu, S. Wang, Y. Feng, X. Wang, Y. Peng and J. Gong, Exploration on the fatigue behavior of low-temperature carburized 316L austenitic stainless steel at elevated temperature, Materials Science and Engineering: A, 850 (11) (2022) 143562.

    Article  Google Scholar 

  16. W. B. Li, J. C. Pang, H. Zhang, S. X. Li and Z. F. Zhang, The high-cycle fatigue properties of selective laser melted Inconel 718 at room and elevated temperatures, Materials Science and Engineering: A, 836 (2) (2022) 142716.

    Article  Google Scholar 

  17. A. P. Jirandehi, A. Haghshenas and M. M. Khonsari, Fatigue analysis of high-carbon steel at different environmental temperatures considering the blue brittleness effect, International Journal of Mechanical Sciences, 230 (15) (2022) 107546.

    Article  Google Scholar 

  18. J. Wang, W. Peng, S. Wu, Y. Yang, C. Chen and Y. Bao, Experimental insight on the fatigue resistance of FV520B-I stainless steel under corrosive environments, International Journal of Fatigue, 159 (2022) 106786.

    Article  Google Scholar 

  19. J. Weinert, S. Gkatzogiannis, I. Engelhardt, P. Knoedel and T. Ummenhofer, Investigation of corrosive influence on the fatigue behaviour of HFMI-treated and as-welded transverse non-load-carrying attachments made of mild steel S355, International Journal of Fatigue, 151 (2021) 106225.

    Article  Google Scholar 

  20. S. Gkatzogiannis, J. Weinert, I. Engelhardt, P. Knoedel and T. Ummenhofer, Correlation of laboratory and real marine corrosion for the investigation of corrosion fatigue behaviour of steel components, International Journal of Fatigue, 126 (2019) 90–102.

    Article  Google Scholar 

  21. N. Zhou, H. Wei, H. Jiang, Y. Cheng, Y. Yao, P. Huang and W. Zhang, Fatigue crack propagation model and life prediction for pantographs on high-speed trains under different service environments, Engineering Failure Analysis, 20 (2023) 107065.

    Article  Google Scholar 

  22. S. Kalpakjian and S. Schmid, Manufacturing Processes for Engineering Materials, 5th Edition, Pearson (2008).

  23. Z. Que, C. Huotilainen, T. Seppänen, J. Lydman and U. Ehrnstén, Effect of machining on near surface microstructure and the observation of martensite at the fatigue crack tip in PWR environment of 304L stainless steel, Journal of Nuclear Materials, 558 (2022) 153399.

    Article  Google Scholar 

  24. L. Vecchiato, A. Campagnolo, B. Besa and G. Meneghetti, The peak stress method applied to fatigue lifetime estimation of welded steel joints under variable amplitude multiaxial local stresses, Procedia Structural Integrity, 38 (2022) 418–427.

    Article  Google Scholar 

  25. A. Bhatia and R. Wattal, Sustainable Advanced Manufacturing and Materials Processing, First Edition, Taylor & Francis Group (2022).

  26. A. Bhatia and R. Wattal, Fatigue behaviour and impact strength assessment of friction stir-welded carbon steel joints, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering (2022) https://doi.org/10.1177/09544089221130615.

  27. N. Z. Khan, A. N. Siddiquee and Z. A. Khan, Friction Stir Welding: Dissimilar Aluminium Alloys, 1st Edition, Kindle Edition, Taylor and Francis Group (2017).

  28. H. A. Al-Karawi, Fatigue life estimation of welded structures enhanced by combined thermo-mechanical treatment methods, Journal of Constructional Steel Research, 187 (2021) 106961.

    Article  Google Scholar 

  29. A. Bhatia and R. Wattal, Friction stir welding of carbon steel: Effect on microstructure and tensile strength, Materials Today: Proceedings, 26 (2) (2020) 1803–1808, https://doi.org/10.1016/j.matpr.2020.02.378.

    Google Scholar 

  30. A. Bhatia and R. Watta, Process parameters optimization for maximizing tensile strength in friction stir-welded carbon steel, Journal of Mechanical Engineering, 67 (6) (2021) 311–321.

    Article  Google Scholar 

  31. R. G. Budynas and J. K. Nisbett, Shigley’s Mechanical Engineering Design, Eighth Edition, McGraw-Hill Primis (2006).

  32. M. M. Szerszena, A. S. Nowak and J. A. Laman, Fatigue reliability of steel bridges, Journal of Constructional Steel Research, 52 (1999) 83–92.

    Article  Google Scholar 

  33. J. Hornas, J. Běhal, P. Homola, S. Senck, M. Holzleitner, N. Godja, Z. Pásztor, B. Hegedüs, R. Doubrava, R. Růžek and L. Petrusov, Modelling fatigue life prediction of additively manufactured Ti−6Al−4V samples using machine learning approach, International Journal of Fatigue, 169 (2023) 107483.

    Article  Google Scholar 

  34. J.-H. Hwang, H.-T. Kim, Y.-J. Kim, H.-S. Nam and J.-W. Kim, Crack tip fields at crack initiation and growth under monotonic and large amplitude cyclic loading: experimental and FE analyses, International Journal of Fatigue, 141 (2020) 105889.

    Article  Google Scholar 

  35. J. Newman, Crack growth under variable amplitude and spectrum loading, Symp. Proc. in Honor of Professor Paul C. Paris, TMS Fall Meeting, Indianapolis (1997) 14–18.

  36. C. Ni, L. Hua, X. Wang, Z. Wang and Z. Ma, Numerical and experimental method for the prediction of the propagation life of fatigue crack on metallic materials, Journal of Mechanical Science and Technology, 32 (2018) 4183–4190.

    Article  Google Scholar 

  37. H. Zhao, Z. Zhai, Y. Mou, L. Liu, Y. Lan and H. Cui, Fatigue life prediction and reliability analysis of the forage crusher rotor, Journal of Mechanical Science and Technology, 36 (2022) 1771–1781.

    Article  Google Scholar 

  38. H. Yan, P. Wei, P. Zhou, L. Chen, H. Liu and C. Zhu, Experimental investigation of crack growth behaviors and mechanical properties degradation during gear bending fatigue, Journal of Mechanical Science and Technology, 36 (2022) 1233–1242.

    Article  Google Scholar 

  39. K. S. Kim, X. Chen, C. Han and H. W. Lee, Estimation methods for fatigue properties of steels under axial and torsional loading, International Journal of Fatigue, 24 (2002) 783–793.

    Article  Google Scholar 

  40. M. A. Meggiolaro and J. T. P. Castro, Statistical evaluation of strain-life fatigue crack initiation predictions, International Journal of Fatigue, 26 (5) (2004) 463–476.

    Article  Google Scholar 

  41. L. Abdullah, S. S. K. Singh, S. Abdullah, A. H. Azman, A. K. Ariffin and Y. S. Kong, The needs of power spectral density in fatigue life prediction of heavy vehicle leaf spring, Journal of Mechanical Science and Technology, 34 (2020) 2341–2346.

    Article  Google Scholar 

  42. P. Zamani, A. Jaamialahmadi and L. F. M. da Silva, Fatigue life evaluation of Al-GFRP bonded lap joints under four-point bending using strain-life criteria, International Journal of Adhesion and Adhesives, 122 (2023) 103338.

    Article  Google Scholar 

  43. X. W. Ye, Y. H. Su and J. P. Han, A state-of-the-art review on fatigue life assessment of steel bridges, Mathematical Problems in Engineering, 2014 (2014) 956473.

    Article  Google Scholar 

  44. P. D. T. Caiza, S. Sire, T. Ummenhofer and Y. Uematsu, Full and partial compression fatigue tests on welded specimens of steel St 52-3. Effects of the stress ratio on the probabilistic fatigue life estimation, Applications in Engineering Science, 10 (2022) 100091.

    Article  Google Scholar 

  45. Z. Burzić, A. Sedmak, S. Sedmak, S. Perković and M. Aranđelović, Analysis of fatigue behaviour of a bridge welded structure, Procedia Structural Integrity, 37 (2022) 269–273.

    Article  Google Scholar 

  46. M. Løvenskjold Larsen, V. Arora, M. Lützen, R. Refstrup Pedersen and E. Putnam, Fatigue life estimation of the weld joint in K-node of the offshore jacket structure using stochastic finite element analysis, Marine Structures, 78 (2021) 103020.

    Article  Google Scholar 

  47. H. Sakurai, K. Suzuki, S. Ishii, K. Hoshi, T. Nozawa, H. Ozaki, H. Haga, H. Tanigawa, Y. Someya, M. Tsuchiya, H. Takeuchi and N. Tsuji, Development of non-destructive testing (NDT) technique for HIPed interface by compton scattering X-ray spectroscopy, Nuclear Materials and Energy, 31 (2022) 101171.

    Article  Google Scholar 

  48. J. R. Deepak, V. K. Bupesh Raja, D. Srikanth, H. Surendran and M. M. Nickolas, Non-destructive testing (NDT) techniques for low carbon steel welded joints: A review and experimental study, Materialstoday Proceedings, 44 (5) (2021) 3732–3737.

    Article  Google Scholar 

  49. B. Kühn, M. Lukić, A. Nussbaumer, H.-P. Günther, R. Helmerich, S. Herion, M. H. Kolstein, S. Walbridge, B. Androic, O. Dijkstra and Ö. Bucak, Assessment of Existing Steel Structures: Recommendations for Estimation of Remaining Fatigue Life, JRC Scientific and Technical Reports, First Edition, Office for Official Publications of the European Communities (2008).

  50. B. Kühn, Assessment of existing steel structures - Recommendations for estimation of the remaining fatigue life, Procedia Engineering, 66 (2013) 3–11.

    Article  Google Scholar 

  51. D. H. Lee, S. J. Kim, M. S. Lee and J. K. Paik, Ultimate limit state based design versus allowable working stress based design for box girder crane structures, Thin-Walled Structures, 34 (2019) 491–507.

    Article  Google Scholar 

  52. A. Palmgren, Durability of ball bearings, ZVDI, 14 (1924) 339–341.

    Google Scholar 

  53. M. A. Miner, Cumulative damage in fatigue, J. Appl. Mech., 12 (1945) A159–A164.

    Article  Google Scholar 

  54. X.-L. Zhao, T. Wilkinson and G. Hancock, Cold-Formed Tubular Members and Connections, Elsevier Science (2005) https://doi.org/10.1016/B978-0-08-044101-6.X5000-2.

  55. S. Siriwardanea, M. Ohgaa, R. Dissanayakeb and K. Taniwakia, Application of new damage indicator-based sequential law for remaining fatigue life estimation of railway bridges, Journal of Constructional Steel Research, 64 (2008) 228–237.

    Article  Google Scholar 

  56. G. Mesmacquea, S. Garciab, A. Amrouchea and C. Rubio-Gonzalez, Sequential law in multiaxial fatigue, a new damage indicator, International Journal of Fatigue, 27 (2005) 461–467.

    Article  Google Scholar 

  57. J. M. Karandikar, N. H. Kim and T. L. Schmitz, Prediction of remaining useful life for fatigue-damaged structures using bayesian inference, Engineering Fracture Mechanics, 96 (2012) 588–605.

    Article  Google Scholar 

  58. K. Y. Lin, D. T. Rusk and J. J. Du, Equivalent level of safety approach to damage-tolerant aircraft structural design, J. Aircraft, 39 (2002) 167–174.

    Article  Google Scholar 

  59. P. J. Smith and R. D. Wilson, Damage Tolerant Composite Wing Panels for Transport Aircraft, Advanced Composite Development Program, National Aeronautics and Space Administration (NASA) (1985).

  60. S. R. Prabhu, Y.-J. Lee and Y. C. Park, A new Bayesian approach to derive Paris\’ law parameters from S-N curve data, Structural Engineering and Mechanics, 69 (4) (2019) 361–369, DOI: https://doi.org/10.12989/sem.2019.69.4.361.

    Google Scholar 

  61. J. M. Karandikar, N. H. Kim and T. L. Schmitz, Prediction of remaining useful life for fatigue-damaged structures using Bayesian inference, Engineering Fracture Mechanics, 96 (2012) 588–605.

    Article  Google Scholar 

  62. A. Gelman, J. B. Carlin, H. S. Stern and D. B. Rubin, Bayesian Data Analysis, 2nd ed., Boca Raton (FL): Chapman and Hall/CRC Press (2009).

  63. K. van der Walde, J. R. Brockenbrough, B. A. Craig and B. M. Hillberry, Multiple fatigue crack growth in pre-corroded 2024-T3 aluminum, Int. J. Fatigue, 27 (2005) 1509–1518.

    Article  Google Scholar 

  64. M. Liakat and M. M. Khonsari, An experimental approach to estimate damage and remaining life of metals under uniaxial fatigue loading, Materials and Design, 57 (2014) 289–297.

    Article  Google Scholar 

  65. Z. Y. Huang, D. Wagner, C. Bathias and J. L. Chaboche, Cumulative fatigue damage in low cycle fatigue and gigacycle fatigue for low carbon-manganese steel, International Journal of Fatigue, 33 (2011) 115–121.

    Article  Google Scholar 

  66. M. Naderi and M. M. Khonsari, A thermodynamic approach to fatigue damage accumulation under variable loading, Mater. Sci. Eng. A, 527 (2010) 6133–6139.

    Article  Google Scholar 

  67. P. Williams, M. Liakat, M. M. Khonsari and O. M. Kabir, A thermographic method for remaining fatigue life prediction of welded joints, Materials and Design, 51 (2013) 916–923.

    Article  Google Scholar 

  68. K. S. Ravi Chandran, A physically based universal functional to characterize the mechanism of fatigue crack growth in materials, Scripta Materialia, 107 (2015) 115–118.

    Article  Google Scholar 

  69. K. S. Ravi Chandran, A novel characterization of fatigue crack growth behavior in metallic materials: the physical relationship between the uncracked section size and the remaining fatigue life, Materials Science and Engineering: A, 714 (31) (2018) 117–123.

    Google Scholar 

  70. Y. Yin, G. Y. Grondin, K. H. Obaia and A. E. Elwi, Fatigue life prediction of heavy mining equipment, part 2: behaviour of corner crack in steel welded box section and remaining fatigue life determination, Journal of Constructional Steel Research, 64 (2008) 62–71.

    Article  Google Scholar 

  71. Canadian Standard Association, CSA Standard G40.21—Structural Quality Steels, Canadian Standard Association (2004).

  72. Y. Yin, G. Y. Grondin, K. H. Obaia and A. E. Elwi, Fatigue life prediction of heavy mining equipments, part 1: fatigue load assessment and crack growth rate tests, Journal of Constructional Steel Research, 63 (11) (2007) 1494–1505.

    Article  Google Scholar 

  73. S. K. Chan, I. S. Tuba and W. K. Wilson, On the finite element method in linear fracture mechanics, Engineer Fracture Mechanics, 3 (1) (1970) 1–17.

    Google Scholar 

  74. Y. Hu, Q. Qin, S. Wu, X. Zhao and W. Wang, Fatigue resistance and remaining life assessment of induction-hardened S38C steel railway axles, International Journal of Fatigue, 144 (2021) 106068.

    Article  Google Scholar 

  75. R. G. Forman and S. R. Mettu, Behavior of surface and corner cracks subjected to tensile and bending loads in Ti−6Al−4V alloy, H. A. Ernst, A. Saxena, D. L. McDowell (Ed.), Fracture Mechanics: 22nd Symposium, 1 (1992) 519–546.

  76. T. Cong, X. Liu, S. Wu, G. Zhang, E. Chen, G. Qian and F. Berto, Study on damage tolerance and remain fatigue life of shattered rim of railway wheels, Engineering Failure Analysis, 123 (2021) 105322.

    Article  Google Scholar 

  77. W. V. Mars, J. D. Suter and M. Bauman, Computing remaining fatigue life under incrementally updated loading histories, SAE Technical Paper (2018) 2018-01-0623.

  78. M. Amiri and M. M. Khonsari, Nondestructive estimation of remaining fatigue life: thermography technique, J. Fail. Anal. and Preven., 12 (2012) 683–688.

    Article  Google Scholar 

  79. M. I. Mazhar, S. Kara and H. Kaepernick, Remaining life estimation of used components in consumer products: life cycle data analysis by weibull and artificial neural networks, Journal of Operations Management, 25 (2007) 1184–1193.

    Article  Google Scholar 

  80. N. G. H. Meyendorf, H. Rosner, V. Kramb and S. Sathish, Thermoacoustic fatigue characterization, Ultrasonic, 40 (2002) 427–434.

    Article  Google Scholar 

  81. K. van der Walde and B. M. Hillberry, Characterization of pitting damage and prediction of remaining fatigue life, International Journal of Fatigue, 30 (2008) 106–118.

    Article  Google Scholar 

  82. K. van der Walde, J. R. Brockenbrough, B. A. Craig and B. M. Hillberry, Multiple fatigue crack growth in pre-corroded 2024-T3 aluminum, Int. J. Fatigue, 27 (2005) 1509–1518.

    Article  Google Scholar 

  83. I. Newman and I. S. Raju, Stress Intensity Factor Equations for Cracks in Three-dimensional Finite Bodies Subjected to Tension and Bending Loads, NASA Technical Memorandum 85793, NASA (1984).

  84. C.-S. Shi, B. Zeng, G.-L. Liu and K.-S. Zhang, Remaining life assessment for steel after low-cycle fatigue by surface crack image, Materials, 12 (2019) 823, Doi:https://doi.org/10.3390/ma12050823.

    Article  Google Scholar 

  85. M. M. Szerszena, A. S. Nowaka and J. A. Lamanb, Fatigue reliability of steel bridges, Journal of Constructional Steel Research, 52 (1999) 83–92.

    Article  Google Scholar 

  86. J. A. Laman, Fatigue load models for girder bridges, Doctoral Dissertation, University of Michigan, Ann Arbor (1995).

  87. J. A. Laman and A. S. Nowak, Fatigue load models for girder bridges ASCE, Journal of Structural Engineering, 122 (7) (1996) 726–733.

    Article  Google Scholar 

  88. A. Omishore, Assessment of steel bearing structures - estimation of the remaining fatigue life, Materials Science and Engineering, 245 (2017) 032027.

    Google Scholar 

  89. R. E. Melchers, Structural Reliability Analysis and Prediction, Ellis Horwood Limited, Chichester, England (1987).

    Google Scholar 

  90. P. Thoft-Christensen and M. J. Baker, Structural Reliability Theory and its Applications, Springer-Verlag (1982).

  91. E. N. Tochaei, Z. Fang, T. Taylor, S. Babanajad and F. Ansari, Structural monitoring and remaining fatigue life estimation of typical welded crack details in the Manhattan Bridge, Engineering Structures, 231 (2021) 111760.

    Article  Google Scholar 

  92. Z. Zhao, A. Haldar and F. L. Breen Jr, Fatigue-reliability updating through inspections of steel bridges, J. Struct. Eng., 120 (5) (1994) 1624–1642.

    Article  Google Scholar 

  93. J.-Y. Kim, L. J. Jacobs and J. Qu, Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves, Journal Acoustical Society of America, 120 (3) (2006).

    Google Scholar 

  94. J. H. Cantrella, Ultrasonic harmonic generation from fatigue-induced dislocation substructures in planar slip metals and assessment of remaining fatigue life, Journal of Applied Physics, 106 (2009) 093516.

    Article  Google Scholar 

  95. J. H. Cantrella and W. T. Yost, Nonlinear ultrasonic characterization of fatigue microstructures, International Journal of Fatigue, 23 (2001) S487–S490.

    Article  Google Scholar 

  96. J. H. Cantrella, Substructural organization, dislocation plasticity and harmonic generation in cyclically stressed wavy slip metals, Proc. R. Soc. Lond. A, 460 (2004) 757–780.

    Article  MATH  Google Scholar 

  97. M. Hong, Z. Su, Q. Wang, L. Cheng and X. Qing, Modeling nonlinearities of ultrasonic waves for fatigue damage 4 characterization: theory, simulation, and experimental validation, Ultrasonics, 54 (3) (2014) 770–778.

    Article  Google Scholar 

  98. B. Wu, B.-S. Yan and C.-F. He, Nonlinear ultrasonic characterizing online fatigue damage and in situ microscopic observation, Transactions of Nonferrous Metals Society of China, 21 (12) (2011) 2597–2604.

    Article  Google Scholar 

  99. S. V. Walker, J.-Y. Kim, J. Qu and L. J. Jacobs, Fatigue damage evaluation in A36 steel using nonlinear Rayleigh surface waves, NDT&E International, 48 (2012) 10–15.

    Article  Google Scholar 

  100. W. Zhu, Y. Xiang, C. Liu, M. Deng, C. Ma and F.-Z. Xuan, Fatigue damage evaluation using nonlinear lamb waves with quasi phase-velocity matching at low frequency, Materials, 11 (10) (2018) 1920.

    Article  Google Scholar 

  101. A. G. Luneva, M. V. Nadezhkinb, A. V. Bochkareva, S. V. Kolosov and L. B. Zuev, Ultrasonic criteria of carbon steel fatigue wear, AIP Conference Proceedings, 2053 (2018) 030035.

    Article  Google Scholar 

  102. B. Chen, C. Wang, P. Wang, S. Zheng and W. Sun, Research on fatigue damage in high-strength steel (FV520B) using nonlinear ultrasonic testing, Shock and Vibration, 2020 (2020).

Download references

Acknowledgments

The authors would like to state that this study was conducted without any external funding or financial support. Despite this, the authors would like to extend their sincere appreciation to their supervisor from The Energy University for providing invaluable guidance and expertise throughout the research project. Their support was instrumental in the success of this study, and the authors are grateful for their contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madyan Abduljabbar Marir.

Additional information

Madyan Abduljabbar Marir was born in Basrah, Iraq. He is a research doctoral student at the University of Tenaga Nasional, Kajang, Malaysia. He holds a master’s degree in mechanical engineering from the University of Basra (2017) and a bachelor’s degree from the Naval College, Marine Engineering Branch, Iraq (2002). He works as a senior chief marine engineer at the General Company for Ports of Iraq. His research interests are nondestructive stress investigation, fatigue analysis and solid mechanics.

Lay Sheng Ewe was born in Penang Island, Malaysia. She received her Ph.D. degree in Pure Physics from the National University of Malaysia in 2008. She is currently an Associate Professor at the Energy University, Putrajaya Campus, Malaysia. Her research interests include material science, superconductor and magnetoresistance (MR). She received her Professional Technologist from the Malaysia Board of Technologists (MBOT) in the year 2020.

Mohd Rashdan Isa was born in Kelantan, Malaysia. He received his Ph.D. degree in Engineering from The Energy University in 2020. His background was in Mechanical Engineering from the University of Applied Science Mannheim in Germany. He is currently a Senior Lecturer with The Energy University and Principal Researcher under the Institute of Sustainable Engineering, Putrajaya Campus, Malaysia. His research is in Applied Mechanics and Renewable Engineering. He received his Professional Technologist from the Malaysia Board of Technologists (MBOT) in the year 2022.

Imad O. Bachi is a Lecturer in the Materials Engineering Department, Basrah University, Basra, Iraq. He received his Ph.D. in Mechanical Engineering from Basrah University and HUST in China. His research interests include nanobeam, vibration, ANSYS, ADINA, neural fuzzy control and fractures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marir, M.A., Sheng, E.L., Isa, M.R. et al. Destructive and nondestructive remaining fatigue life prediction methods of metals: a review. J Mech Sci Technol 37, 3999–4015 (2023). https://doi.org/10.1007/s12206-023-0716-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-023-0716-y

Keywords

Navigation