Skip to main content
Log in

Microstructure and mechanical properties of 2060-T8 Al-Li alloy after warm incremental forming

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

This study was aimed in the mechanical properties exploration of warm incremental forming of a newly developed 2060 aluminumlithium (Al-Li) alloy. One method of oil heating was utilized in this article. Following the tensile and hardness tests of the components, it could be obtained that the tensile strength and hardness of the incremental forming component decreased with increasing the temperature and increased with increasing the feed rate. Meanwhile, the tensile strength and hardness of the component manufactured at 120 °C and 160 °C were higher than the base material, due to strain hardening. Dynamic recovery existed in the component manufactured at 200 °C and dynamic recrystallization existed in the component manufactured at 240 °C. Also, the results were in a good agreement with the optical micrograph microstructure and the tensile fracture morphology. The tensile fracture mechanism of the component manufactured at 120 °C was mainly brittle fracture. In contrast, the tensile fracture mechanism of the component manufactured at 200 °C and 240 °C was ductile fracture. In addition, the accurate prediction models of the component mechanical properties with different forming temperatures and feed rate were obtained through response surface analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Ning, L. J. Zhang, Q. L. Bai, X. Q. Yin, J. Niu and J. X. Zhang, Comparison of the microstructure and mechanical performance of 2A97 al-li alloy joints between autogenous and non-autogenous laser welding, Materials & Design, 120 (2017) 144–156.

    Article  Google Scholar 

  2. Y. Tian, J. D. Robson, S. Riekehr, N. Kashaev, L. Wang, T. Lowe and A. Karanika, Process optimization of dual-laser beam welding of advanced Al-Li alloys through hot cracking susceptibility modeling, Metallurgical & Materials Transactions A, 47 (7) (2016) 3533–3544.

    Article  Google Scholar 

  3. L. M. Karabin, G. H. Bray, R. J. Rioja and G. Venema, Al-Li-Cu-Mg-(Ag) products for lower wing skin applications, ICAA13 Pittsburgh, Springer International Publishing (2012) 529–534.

    Google Scholar 

  4. L. Ou, Z. Zheng, Y. Nie and H. Jian, Hot deformation behavior of 2060 alloy, Journal of Alloys & Compounds, 648 (2015) 681–689.

    Article  Google Scholar 

  5. T. Dursun and C. Soutis, Recent developments in advanced aircraft aluminium alloys, Materials & Design, 56 (4) (2014) 862–871.

    Article  Google Scholar 

  6. R. J. Rioja and J. Liu, The evolution of Al-Li base products for aerospace and space applications, Metallurgical & Materials Transactions A: Physical Metallurgy and Materials Science, 43 (9) (2012) 3325–3337.

    Article  Google Scholar 

  7. B. Bodily, M. Heinimann, G. Bray, E. Colvin and J. Witters, Advanced aluminum and aluminum-lithium solutions for derivative and next generation aerospace structures, SAE 2012 Aerospace Manufacturing and Automated Fastening Conference & Exhibition (2012) 1874–1883.

    Google Scholar 

  8. W. C. Emmens, G. Sebastiani and A. H. V. D. Boogaard, The technology of incremental sheet forming—a brief review of the history, Journal of Materials Processing Technology, 210 (8) (2010) 981–997.

    Article  Google Scholar 

  9. W. Bao, X. Chu, S. Lin and J. Gao, Experimental investigation on formability and microstructure of AZ31B alloy in electropulse-assisted incremental forming, Materials & Design, 87 (2015) 632–639.

    Article  Google Scholar 

  10. H. Vanhove, J. Verbert, J. Gu, I. Vasilakos and J. R. Duflou, An experimental study of twist phenomena in single point incremental forming, International Journal of Material Forming, 3 (1) (2010) 975–978.

    Article  Google Scholar 

  11. R. Malhotra, L. Xue, T. Belytschko and J. Cao, Mechanics of fracture in single point incremental forming, Journal of Materials Processing Technology, 212 (7) (2012) 1573–1590.

    Article  Google Scholar 

  12. G. Ingarao, G. Ambrogio, F. Gagliardi and R. D. Lorenzo, A sustainability point of view on sheet metal forming operations: material wasting and energy consumption in incremental forming and stamping processes, Journal of Cleaner Production, 29–30 (5) (2012) 255–268.

    Article  Google Scholar 

  13. Y. Fang, B. Lu, J. Chen, D. K. Xu and H. Ou, Analytical and experimental investigations on deformation mechanism and fracture behavior in single point incremental forming, Journal of Materials Processing Technology, 214 (8) (2014) 1503–1515.

    Article  Google Scholar 

  14. M. A. Dittrich, T. G. Gutowski, J. Cao, J. T. Roth, Z. C. Xia, V. Kiridena, F. Ren and H. Henning, Exergy analysis of incremental sheet forming, Production Engineering, 6 (2) (2012) 169–177.

    Article  Google Scholar 

  15. P. A. F. Martins, N. Bay, M. Skjoedt and M. B. Silva, Theory of single point incremental forming, CIRP Annals -Manufacturing Technology, 57 (1) (2008) 247–252.

    Article  Google Scholar 

  16. H. Lu, M. Kearney, C. Wang, S. Liu and P. A. Meehan, Part accuracy improvement in two point incremental forming with a partial die using a model predictive control algorithm, Precision Engineering, 49 (2017) 179–188.

    Article  Google Scholar 

  17. K. Suresh, H. Nasih, N. Jasti and M. Dwivedy, Experimental studies in multi stage incremental forming of steel sheets, Mater. Today Proceedings, 4 (2017) 4116–4122.

    Article  Google Scholar 

  18. B. Valoppi, A. J. S. Egea, Z. Zhang, H. A. G. Rojas, A. Ghiotti, S. Bruschi and J. Cao, A hybrid mixed double-sided incremental forming method for forming ti6al4v alloy, CIRP Annals -Manufacturing Technology, 65 (1) (2016) 309–312.

    Article  Google Scholar 

  19. G. Fan, L. Gao, G. Hussain and Z. Wu, Electric hot incremental forming: A novel technique, International Journal of Machine Tools & Manufacture, 48 (15) (2008) 1688–1692.

    Article  Google Scholar 

  20. D. K. Xu, B. Lu, T. T. Cao, H. Zhang, J. Chen, H. Long and J. Cao, Enhancement of process capabilities in electrically-assisted double sided incremental forming, Materials & Design, 92 (2016) 268–280.

    Article  Google Scholar 

  21. M. Otsu, M. Yasunaga, M. Matsuda and K. Takashima, Friction stir incremental forming of A2017 aluminum sheets, Procedia Engineering, 81 (6) (2014) 2318–2323.

    Article  Google Scholar 

  22. R. Hino, K. Kawabata and F. Yoshida, Incremental forming with local heating by laser irradiation for magnesium alloy sheet, Procedia Engineering, 81 (2014) 2330–2335.

    Article  Google Scholar 

  23. Y. H. Ji and J. J. Park, Formability of magnesium AZ31 sheet in the incremental forming at warm temperature, Journal of Materials Processing Technology, 201 (1-3) (2008) 354–358.

    Article  Google Scholar 

  24. G. Ambrogio, L. Filice and G. L. Manco, Warm incremental forming of magnesium alloy AZ31, CIRP Annals -Manufacturing Technology, 57 (1) (2008) 257–260.

    Article  Google Scholar 

  25. L. Galdos, E. S. D. Argandona, I. Ulacia and G. Arruebarrena, Warm incremental forming of magnesium alloys using hot fluid as heating media, Key Engineering Materials, 504–506 (504–506) (2012) 815–820.

    Article  Google Scholar 

  26. A. Al-Obaidi, V. Kräusel and D. Landgrebe, Hot singlepoint incremental forming assisted by induction heating, International Journal of Advanced Manufacturing Technology, 82 (5-8) (2016) 1163–1171.

    Article  Google Scholar 

  27. H. Khazaali and F. Fereshteh-Saniee, A comprehensive experimental investigation on the influences of the process variables on warm incremental forming of Ti-6Al-4V titanium alloy using a simple technique, International Journal of Advanced Manufacturing Technology, 87 (9-12) (2016) 2911–2923.

    Article  Google Scholar 

  28. G. Fan and L. Gao, Mechanical property of Ti-6Al-4V sheet in one-sided electric hot incremental forming, International Journal of Advanced Manufacturing Technology, 72 (5-8) (2014) 989–994.

    Article  Google Scholar 

  29. G. Ambrogio, F. Gagliardi, A. Chamanfar, W. Z. Misiolek and L. Filice, Induction heating and cryogenic cooling in single point incremental forming of Ti-6Al-4V: Process setup and evolution of microstructure and mechanical properties, International Journal of Advanced Manufacturing Technology, 91 (2017) 803–812.

    Article  Google Scholar 

  30. P. A. F. Martins, N. Bay, M. Skjoedt and M. B. Silva, Theory of single point incremental forming, CIRP Annals -Manufacturing Technology, 57 (1) (2008) 247–252.

    Article  Google Scholar 

  31. M. Bambach, A geometrical model of the kinematics of incremental sheet forming for the prediction of membrane strains and sheet thickness, Journal of Materials Processing Technology, 210 (12) (2010) 1562–1573.

    Article  Google Scholar 

  32. M. B. Silva, M. Skjoedt, P. A. F. Martins and N. Bay, Revisiting the fundamentals of single point incremental forming by means of membrane analysis, International Journal of Machine Tools & Manufacture, 48 (1) (2008) 73–83.

    Article  Google Scholar 

  33. X. Zhang, T. Huang, W. Yang, R. Xiao, Z. Liu and L. Li, Microstructure and mechanical properties of laser beamwelded AA2060 Al-Li alloy, Journal of Materials Processing Technology, 237 (2016) 301–308.

    Article  Google Scholar 

  34. H. Liu, Y. Hu, C. Dou and D. P. Sekulic, An effect of the rotation speed on microstructure and mechanical properties of the friction stir welded 2060-T8 Al-Li alloy, Materials Characterization, 123 (2017) 9–19.

    Article  Google Scholar 

  35. X. Zhang, H. Ting, W. Yang, R. Xiao, Z. Liu and L. Lin, Microstructure and mechanical properties of laser beam welded Al–Li alloy 2060 with Al–Mg filler wire, Materials & Design, 88 (2015) 446–450.

    Article  Google Scholar 

  36. J. Asghar, R. Lingam, E. Shibin and N. V. Reddy, Tool path design for enhancement of accuracy in single-point incremental forming, Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 228 (9) (2014) 1027–1035.

    Article  Google Scholar 

  37. A. Bansal, R. Lingam, S. K. Yadav and N. V. Reddy, Prediction of forming forces in single point incremental forming, Journal of Manufacturing Processes, 28 (2017) 486–493.

    Article  Google Scholar 

  38. M. E. Khamneh, M. Askari-Paykani, H. Shahverdi, S. M. M. Hadavi and M. Emami, Optimization of spring-back in creep age forming process of 7075 Al-Alclad alloy using Doptimal design of experiment method, Measurement, 88 (2016) 278–286.

    Article  Google Scholar 

  39. C. H. Liu, A. C. Wang, Y. S. Chen and C. M. Wang, The coupled thermo-mechanical analysis in the upsetting process by the dynamic FEM, Journal of Materials Processing Technology, 201 (1-3) (2008) 37–42.

    Article  Google Scholar 

  40. J. R. Duflou, B. Callebaut, J. Verbert and H. D. Baerdemaeker, Laser assisted incremental forming: formability and accuracy improvement, CIRP Annals -Manufacturing Technology, 56 (1) (2007) 273–276.

    Article  Google Scholar 

  41. P. Liu, Y. Li, J. Wang and J. Guo, Vacuum brazing technology and microstructure near the interface of Al/18-8 stainless steel, Materials Research Bulletin, 38 (9-10) (2003) 1493–1499.

    Article  Google Scholar 

  42. T. N. Nguyen, T. Siegmund, V. Tomar and J. J. Kruzic, Interaction of rate-and size-effect using a dislocation density based strain gradient viscoplasticity model, Journal of the Mechanics & Physics of Solids, 109 (2017) 1–21.

    Article  MathSciNet  Google Scholar 

  43. V. Mugendiran, A. Gnanavelbabu and R. Ramadoss, Parameter optimization for surface roughness and wall thickness on AA5052 aluminum alloy by incremental forming using response surface methodology, Procedia Engineering, 97 (2014) 1991–2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xunzhong Guo.

Additional information

Recommended by Associate Editor Dae-Cheol Ko

Hui Wang received his Dr. degree in engineering from Nanjing University of Aeronautics and Astronautics, China. He works at Nanjing University of Aeronautics and Astronautics. His main subject is advanced material processing technology.

Xunzhong Guo received his Dr. degree in engineering from Nanjing University of Aeronautics and Astronautics, China. He works at Nanjing University of Aeronautics and Astronautics. His main subject is advanced material processing technology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Gu, Y., Guo, X. et al. Microstructure and mechanical properties of 2060-T8 Al-Li alloy after warm incremental forming. J Mech Sci Technol 32, 4801–4812 (2018). https://doi.org/10.1007/s12206-018-0927-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-018-0927-9

Keywords

Navigation