Skip to main content
Log in

Limit-point buckling analyses using solid, shell and solid-shell elements

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

In this paper, the recently-developed solid-shell element SHB8PS is used for the analysis of a representative set of popular limit-point buckling benchmark problems. For this purpose, the element has been implemented in Abaqus/Standard finite element software and the modified Riks method was employed as an efficient path-following strategy. For the benchmark problems tested, the new element shows better performance compared to solid elements and often performs as well as state-of-the-art shell elements. In contrast to shell elements, it allows for the accurate prescription of boundary conditions as applied to the actual edges of the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Domissy, Formulation et évaluation d’éléments finis volumiques modifiés pour l’analyse linéaire et non linéaire des coques, PhD thesis, UT Compiègne, France (1997).

    Google Scholar 

  2. C. Cho, H. C. Park and S. W. Lee, Stability analysis using a geometrically nonlinear assumed strain solid shell element model, Finite Elements Anal Des, 29 (1998) 121–135.

    Article  MATH  Google Scholar 

  3. R. Hauptmann and K. Schweizerhof, A systematic development of solid-shell element formulations for linear and nonlinear analyses employing only displacement degrees of freedom, Int. J. Numer. Methods Eng., 42 (1998) 49–69.

    Article  MATH  Google Scholar 

  4. D. Lemosse, Eléments finis isoparamétriques tridimensionnels pour l’étude des structures minces, PhD thesis, INSA-Rouen, France (2000).

    Google Scholar 

  5. K. Y. Sze and L. Q., Yao, A hybrid stress ANS solid-shell element and its generalization for smart structure modelling. Part I-solid-shell element formulation, Int. J. Numer. Methods Eng., 48 (2000) 545–564.

    Article  MATH  Google Scholar 

  6. R. Hauptmann, S. Doll, M. Harnau and K. Schweizerhof, Solid-shell elements with linear and quadratic shape functions at large deformations with nearly incompressible materials, Comput. Struct., 79 (2001) 1671–1685.

    Article  Google Scholar 

  7. F. Abed-Meraim, A. Combescure, SHB8PS a new intelligent assumed strain continuum mechanics shell element for impact analysis on a rotating body, First MIT conference on computational fluid and solid mechanics, Cambridge, USA, 2001.

    Google Scholar 

  8. F. Abed-Meraim, A. Combescure, SHB8PS — a new adaptive, assumed-strain continuum mechanics shell element for impact analysis, Comput. Struct., 80 (2002) 791–803.

    Article  Google Scholar 

  9. A. Legay, A. Combescure, Elastoplastic stability analysis of shells using the physically stabilized finite element SHB8PS, Int. J. Numer. Methods Eng., 57 (2003) 1299–1322.

    Article  MATH  Google Scholar 

  10. J. C. Simo and M. S. Rifai, A class of mixed assumed strain methods and the method of incompatible modes, Int. J. Numer. Methods Eng., 29 (1990) 1595–1638.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. C. Simo and F. Armero, Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes, Int. J. Numer. Methods Eng., 33 (1992) 1413–1449.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. C. Simo, F. Armero and R. L. Taylor, Improved versions of assumed enhanced strain tri- linear elements for 3D finite deformation problems, Comput. Methods Appl. Mech. Eng., 110 (1993) 359–386.

    Article  MathSciNet  MATH  Google Scholar 

  13. L. Vu-Quoc and X. G. Tan, Optimal solid shells for nonlinear analyses of multilayer composites, I. Statics, Comput. Methods Appl. Mech. Eng., 192 (2003) 975–1016.

    Article  MATH  Google Scholar 

  14. Y. I. Chen and G. Y. Wu, A mixed 8-node hexahedral element based on the Hu-Washizu principle and the field extrapolation technique, Struct. Eng. Mech., 17 (2004) 113–140.

    Google Scholar 

  15. K. D. Kim, G. Z. Liu and S. C. Han, A resultant 8-node solid-shell element for geometrically nonlinear analysis, Comput. Mech., 35 (2005) 315–331.

    Article  MATH  Google Scholar 

  16. R. J. Alves de Sousa, R. P. R. Cardoso, R. A. Fontes Valente, J. W. Yoon, J. J. Gracio and R. M. Natal Jorge, A new one-point quadrature enhanced assumed strain (EAS) solid-shell element with multiple integration points along thickness: Part I — Geometrically linear applications, Int. J. Numer. Methods Eng., 62 (2005) 952–977.

    Article  MATH  Google Scholar 

  17. R. J. Alves de Sousa, R. P. R. Cardoso, R. A. Fontes Valente, J. W. Yoon, J. J. Gracio and R. M. Natal Jorge, A new one-point quadrature enhanced assumed strain (EAS) solid-shell element with multiple integration points along thickness: Part II — Nonlinear applications, Int. J. Numer. Methods Eng., 67 (2006) 160–188.

    Article  MATH  Google Scholar 

  18. S. Reese, A large deformation solid-shell concept based on reduced integration with hourglass stabilization, Int. J. Numer. Methods Eng., 69 (2007) 1671–1716.

    Article  MathSciNet  MATH  Google Scholar 

  19. F. Abed-Meraim, A. Combescure, An improved assumed strain solid-shell element formulation with physical stabilization for geometric nonlinear applications and elastic-plastic stability analysis, Int. J. Numer. Methods Eng., 80 (2009) 1640–1686.

    Article  MathSciNet  MATH  Google Scholar 

  20. T. Belytschko and L. P. Bindeman, Assumed strain stabilization of the eight node hexahedral element, Comput. Methods Appl. Mech. Eng., 105 (1993) 225–260.

    Article  MATH  Google Scholar 

  21. J. C. Simo and T. J. R. Hughes, On the variational foundations of assumed strain methods, J. Appl. Mech., 53 (1986) 51–54.

    Article  MathSciNet  MATH  Google Scholar 

  22. D. P. Flanagan and T. Belytschko, A uniform strain hexahedron and quadrilateral with orthogonal hourglass control, Int. J. Numer. Methods Eng., 17 (1981) 679–706.

    Article  MATH  Google Scholar 

  23. S. P. Timoshenko and J. M. Gere, Theory of elastic stability, New York: McGraw-Hill (1961).

    Google Scholar 

  24. W. T. Koiter, On the stability of elastic equilibrium, PhD thesis, Delft (1945), Trans. NASA Tech. Trans. F10 (1967).

  25. J. W. Hutchinson and W. T. Koiter, Post-buckling theory, Appl. Mech. Rev., 23 (1970) 1353–1366.

    Google Scholar 

  26. J. M. T. Thompson and G. W. Hunt, A General theory of elastic Stability, New York: Wiley (1973).

    MATH  Google Scholar 

  27. B. Budiansky, Theory of buckling and post-buckling behaviour of elastic structures, Adv. Appl. Mech. 14 (1974) 1–65.

    Article  Google Scholar 

  28. ABAQUS Version 6.7 Documentation, Dassault Systèmes Simulia Corp. (2007).

  29. E. Riks, An incremental approach to the solution of snapping and buckling problems, Int. J. Solids Struct., 15 (1979) 529–551.

    Article  MathSciNet  MATH  Google Scholar 

  30. M. A. Crisfield, A fast incremental/iterative solution procedure that handles “snap-through”, Comput. Struct., 13 (1981) 55–62.

    Article  MATH  Google Scholar 

  31. E. Ramm, Strategies for tracing the nonlinear response near limit points. In: W. Wunderlich, E. Stein, K. J. Bathe, editors, Nonlinear finite element analysis in structural mechanics, New York: Springer-Verlag (1981) 63–89.

  32. I. Leahu-Aluas and F. Abed-Meraim, A proposed set of popular limit point buckling benchmark problems, Struct. Eng. Mech. 38 (2011).

  33. P. Wriggers and J. C. Simo, A general procedure for the direct computation of turning and bifurcation points, Int. J. Numer. Methods Eng., 30 (1990) 155–176.

    Article  MATH  Google Scholar 

  34. L. Jiang and M. W. Chernuka, A corotational formulation for geometrically nonlinear finite element analysis of spatial beams, Trans. Canadian Soc. Mech. Eng., 18 (1994) 65–88.

    Google Scholar 

  35. E. H. Boutyour, H. Zahrouni, M. Potier-Ferry and M. Boudi, Bifurcation points and bifurcated branches by an asymptotic numerical method and Padé approximants, Int. J. Numer. Methods Eng., 60 (2004) 1987–2012.

    Article  MathSciNet  MATH  Google Scholar 

  36. K. S. Surana, Geometrically nonlinear formulation for curved shell elements, Int. J. Numer. Methods Eng., 19 (1983) 581–615.

    Article  MATH  Google Scholar 

  37. J. C. Simo and L. Vu-Quoc, A three-dimensional finitestrain rod model. Part II: Computational aspects, Comput. Methods Appl. Mech. Eng., 58 (1986) 79–116.

    Article  MATH  Google Scholar 

  38. D. A. DaDeppo and R. Schmidt, Instability of clampedhinged circular arches subjected to a point load. Trans ASME J Appl Mech 42 (1975) 894–896.

    Article  Google Scholar 

  39. J. K. Kim and Y. H. Kim, A predictor-corrector method for structural nonlinear analysis, Comput. Methods Appl. Mech. Eng., 191 (2001) 959–974.

    Article  MATH  Google Scholar 

  40. S. Klinkel and W. Wagner, A geometrical non-linear brick element based on the EAS-method, Int. J. Numer. Methods Eng., 40 (1997) 4529–4545.

    Article  MATH  Google Scholar 

  41. K. Y. Sze and S. J. Zheng, A stabilized hybrid-stress solid element for geometrically nonlinear homogeneous and laminated shell analyses, Comput. Methods Appl. Mech. Eng., 191 (2002) 1945–1966.

    Article  MATH  Google Scholar 

  42. K. Y. Sze, X. H. Liu and S. H. Lo, Popular benchmark problems for geometric nonlinear analysis of shells, Finite Elements Anal. Des., 40 (2004) 1551–1569.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farid Abed-Meraim.

Additional information

This paper was recommended for publication in revised form by Editor Maenghyo Cho

Farid Abed-Meraim received his Ph.D. in Theoretical and Applied Mechanics from École Polytechnique, Paris in 1999. He joined Arts et Métiers ParisTech, Metz Campus in 2000, where he is currently an associate professor at the LEM3 laboratory. His main research interests include structural stability (bifurcation) analysis of dissipative systems (elasto-plastic, visco-elastic and visco-plastic), material instability modeling in relation to the prediction of formability of metal sheets, as well as finite element technology (solid-shell formulations).

Marc Killpack received his B.S. and his M.S. in Mechanical Engineering from Brigham Young University and Georgia Institute of Technology, USA, respectively, in 2007 and 2008. After a joint program with Arts et Métiers Paris-Tech Metz, he joined Georgia Institute of Technology, where he is pursuing a robotics Ph.D. degree. His research interests cover issues related to controls, dynamics, and computer vision (perception).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Killpack, M., Abed-Meraim, F. Limit-point buckling analyses using solid, shell and solid-shell elements. J Mech Sci Technol 25, 1105–1117 (2011). https://doi.org/10.1007/s12206-011-0305-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-011-0305-3

Keywords

Navigation