Skip to main content
Log in

Low-temperature creep behavior of ultrafine-grained 5083 Al alloy processed by equal-channel angular pressing

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Low temperature creep behavior of ECAPed Al 5083 alloy with grain sizes of approximately 300 nm was investigated at temperatures of 498, 523 and 548 K. The value of the stress exponent was found to be 3.5 at a low stress level and increased to 5.0 at a high stress level. At the low stress level, the creep curve exhibits typical class II behavior due to the accumulated strain during the ECAP process, even though the creep is controlled by solute-drag processes with a stress exponent of 3.5. The average value of Q obtained from the analysis of the data is close to that for dislocation pipe diffusion. Therefore, on the basis of the activation energy in a temperature range of 498K to 548K at low and high stress level, the creep deformation is controlled by dislocation glide and climb processes, respectively, and the rate-controlling diffusion step might be dislocation pipe diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Z. Valiev, E. V. Kozlov, Y. F. Ivanov, J. Lian, A. A. Nazarov and B. Baudelet, Deformation behaviour of ultrafine-grained copper, Acta Metall. Mater., 42 (1994) 2467–2475.

    Article  Google Scholar 

  2. Y. Iwahashi, M. Furukawa, Z. Horita, M. Nemoto and T. G. Langdon, Microstructural characteristics of ultrafine-grained aluminum produced using equal-channel angular pressing., Metal Mater., Trans. 29A (1998) 2245–2252.

    Article  Google Scholar 

  3. D. H. Shin, W. J. Kim and W. Y. Choo, Grain refinement of a commercial 0.15%C steel by equal-channel angular pressing, Scripta Mater., 41 (1999) 259–262.

    Article  Google Scholar 

  4. V. V. Stolyarov, Y. T. Zhu, I. V. Alexandrov, T. C. Lowe and R. Z. Valiev, Influence of ECAP routes on the microstructure and properties of pure Ti, Mat. Sci. Eng., A299 (2001) 59–67.

    Google Scholar 

  5. I. Charit and R. S. Mishira, Low temperature superplasticity in a friction-stir-processed ultrafine grained Al-Zn-Mg-Sc alloy, Acta Mater., 53 (2005) 4211–4223.

    Article  Google Scholar 

  6. K. T. Park, D. Y. Hwang, S. Y. Chang and D. H. Shin, Low-temperature superplastic behavior of a submicrometer-grained 5083 Al alloy fabricated by severe plastic deformation, Metal Mater. Trans., 33A (2002) 2859.

    Article  Google Scholar 

  7. I. C. Hsiao and J. C. Huang, Deformation mechanisms during low-and high-temperature superplasticity in 5083 Al-Mg alloy, Metal Mater. Trans., 33A (2002) 1373–1384.

    Article  Google Scholar 

  8. V. Sklenicka, J. Dvorak, P. Kral, Z. Stonawska and M. Svoboda, Creep processes in pure aluminium processed by equal-channel angular pressing, Mater. Sci. Eng., A410–411 (2005) 408–412.

    Google Scholar 

  9. K. Isshiki, Z. Horita, T. Fujinami, T. Sano, M. Nemoto, Y. Ma and T. G. Langdon, A new miniature mechanical testing procedure: Application to intermetallics, Metal Mater. Trans., 28A (1997) 2577–2582.

    Article  Google Scholar 

  10. W. R. Cannon and O. D. Sherby, High temperature creep behavior of class I and class II solid-solution alloys. Metall. Trans., 1 (1970) 1030–1032.

    Google Scholar 

  11. M. Kawazoe, T. Shibata, T. Mukai and K. Higashi, Elevated temperature mechanical properties of A 5056 Al-Mg alloy processed by equal-channel-angular-extrusion, Scripta Mater., 36 (1997) 699–705.

    Article  Google Scholar 

  12. Y. R. Kolobov, G. P. Garbovetskaya, M. B. Ivanov, A. P. Zhilyaev and R. Z. Valiev, Grain boundary diffusion characteristics of nanostructured nickel, Scripta Mater., 44 (2001) 873–878.

    Article  Google Scholar 

  13. M. Chauhan, I. Roy and F. A. Mohamed, Creep behavior in near-nanostructured Al 5083 alloy, Mater. Sc.i Eng., A410–411 (2005) 24–27.

    Article  Google Scholar 

  14. Y. Xun and F. A. Mohamed, Superplastic behavior of Zn-22%Al containing nano-scale dispersion particles, Acta Mater., 52 (2004) 4401–4412.

    Article  Google Scholar 

  15. D. H. Bae and A. K. Ghosh, Grain size and temperature dependence of superplastic deformation in an Al-Mg alloy under isostructural condition, Acta Mater., 48 (2000) 1207–124.

    Article  Google Scholar 

  16. S. L. Robinson and O. D. Sherby, Mechanical behavior of polycrystalline tungsten at elevated temperature, Acta Metall., 17 (1969) 109–125.

    Article  Google Scholar 

  17. P. Yavari, F. A. Mohamed and T. G. Langdon, Creep and substructure formation in an Al-5% Mg solid solution alloy. Acta Metall., 29 (1981) 1495–1507.

    Article  Google Scholar 

  18. H. J. Frost and M. F. Ashby Deformation-Mechanism Maps, Pergamon Press Oxford (1982) 1.

    Google Scholar 

  19. J. Weertman, Steady-state creep of crystals., J. Appl. Phys., 28 (1957) 1185–1189.

    Article  Google Scholar 

  20. S. Takeuchi and A. S. Argon, Steady-state creep of alloys due to viscous motion of dislocations, Acta Metall., 24 (1976) 883–889.

    Article  Google Scholar 

  21. J. Friedel, Dislocations, Pergamon Press, Oxford, 1964.

    MATH  Google Scholar 

  22. J. Weertman, High temperature creep produced by dislocation motion, in J.E. Dorn memorial Symposium, Cleveland, Ohio, 1972.

    Google Scholar 

  23. S. S. Vagarali and T. G. Langdon, Deformation mechanisms in h.c.p. metals at elevated temperatures—II. Creep behavior of a Mg-0.8% Al solid solution alloy, Acta Metall., 30 (1982) 1157–1170.

    Article  Google Scholar 

  24. H. W. King, Quantitative size-factors for metallic solid solutions, J. Mater. Sci., 1 (1966) 79–90.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho-Kyung Kim.

Additional information

This paper was recommended for publication in revised form by Associate Editor Seong Beom Lee

Ho-Kyung Kim is a Professor of Department of Automotive Engineering of Seoul National University of Technology, Korea. He worked for Hyundai Aerospace Company as researcher. He received a B.S. in Mechanical Engineering from Hong-Ik University, Korea in 1982. He got MS and Ph.D. degrees from University of California at Irvine in U.S.A. His research areas include creep, fatigue and strength of structural materials.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, HK. Low-temperature creep behavior of ultrafine-grained 5083 Al alloy processed by equal-channel angular pressing. J Mech Sci Technol 24, 2075–2081 (2010). https://doi.org/10.1007/s12206-010-0703-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-010-0703-z

Keywords

Navigation