Skip to main content
Log in

Seismic Behaviors of Steel Bar Reinforced Joints of Concrete Filled Steel Tubular Laminated Columns

  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

This paper presents the numerical studies on seismic behaviors of steel bar reinforced joints of Concrete Filled Steel Tubular Laminated Columns (CFSTLC). First, the material constitutive relations and modeling details are introduced. Then, the failure mode, bearing capacity and energy dissipation of CFSTLC joints under cyclic loading are studied, in which the effects of concrete grade, steel grade and reinforcement arrangement are discussed. Finally, the restoring force model is proposed to describe the seismic behaviors of bar reinforced joints. Results show that the bar reinforced joints perform good seismic performance. There are three main failure modes, including flexural failure of beam, shear failure of column and mixed failure. Increasing concrete grade and reinforcement ratio of column can increase the ultimate bearing capacity and energy dissipation capacity. Using bundled longitudinal reinforcement bars in beams can slightly reduce the ultimate bearing capacity, but can improve the energy dissipation capacity of specimens with flexural failure modes. Increasing the reinforcement ratio and steel grade can decrease the degradation rate of structural stiffness. The tri-linear restoring force model can make a good prediction of hysteretic behaviors of CFSTLC joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abbas, H., Al-Salloum, Y., Alsayed, S., Alhaddad, M., and Iqbal, R. (2017). “Post-heating response of concrete-filled circular steel columns.” KSCE Journal of Civil Engineering, Vol. 21, No. 4, pp. 1367–1378, DOI: 10.1007/s12205-016-0852-3.

    Article  Google Scholar 

  • Beutel, J., Thambiratnam, D., and Perera, N. (2002). “Cyclic behaviour of concrete filled steel tubular column to steel beam connections.” Engineering Structures, Vol. 24, No. 1, pp. 29–38, DOI: 10.1016/S0141-0296(01)00083-9.

    Article  Google Scholar 

  • Cao, W., Hui, C., Dong, H., Fangfang, X. U., and Qiao, Q. (2013). “Study on seismic behavior of bottom strengthened rectangular steel tube reinforced concrete columns.” World Earthquake Engineering, Vol. 29, No. 3, pp. 14–19, DOI: 1007-6069(2013)03-0014-06.

    Google Scholar 

  • China Engineering Construction Standardization Association (2005). CECS188:2005, Technical specification for steel tube-reinforced concrete column structure, Tsinghua University; Beijing, China.

  • Clough, R. W. (1966). Effect of stiffness degradation on earthquake ductility requirements, Ph.D. Thesis, Univ. of California, California, United States of America.

    Google Scholar 

  • Dong, H. Y., Geng, H. X., Zhang, J. W., Cao, W. L., and Yang, X. Q. (2011). “Experimental study on seismic behavior of composite core walls with steel tube-reinforced concrete columns.” Journal of Beijing University of Technology, Vol. 37, No. 11, pp. 1720–1728, DOI: 0254-0037(2011)11-1720-09.

    Google Scholar 

  • Duc, N. D. (2013). “Nonlinear dynamic response of imperfect eccentrically stiffened FGM double curved shallow shells on elastic foundation.” Composite Structures, Vol. 99, pp. 88–96, DOI: 10.1016/j.compstruct.2012.11.017.

    Article  Google Scholar 

  • Duc, N. D. (2016a). “Nonlinear thermal dynamic analysis of eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations using the Reddy’s third-order shear deformation shell theory.” European Journal of Mechanics -A/Solids, Vol. 58, pp. 10–30, DOI: 10.1016/j.euromechsol.2016.01.004.

    Article  MathSciNet  MATH  Google Scholar 

  • Duc, N. D. (2016b). “Nonlinear thermo-electro-mechanical dynamic response of shear deformable piezoelectric Sigmoid functionally graded sandwich circular cylindrical shells on elastic foundations.” Journal of Sandwich Structures and Materials, first published online: June 8, 2016, DOI: 10.1177/1099636216653266.

    Google Scholar 

  • Duc, N. D., Kim, S.-E., Cong, P. H., Anh, N. T., and Khoa, N. D. (2017). “Dynamic response and vibration of composite double curved shallow shells with negative Poisson’s ratio in auxetic honeycombs core layer on elastic foundations subjected to blast and damping loads.” International Journal of Mechanical of Sciences, Vol. 133, pp. 504–512, DOI: 10.1016/j.ijmecsci.2017.09.009.

    Article  Google Scholar 

  • Duc, N. D., Kim, S. E., Tuan, N. D., Phuong Tran, and Khoa, N. D. (2017). “New approach to study nonlinear dynamic response and vibration of sandwich composite cylindrical panels with auxetic honeycomb core layer.” Journal Aerospace Science and Technology, 2017, Vol. 70, pp. 396–404, DOI: 10.1016/j.ast.2017.08.023.

    Article  Google Scholar 

  • Evangelista, L. and Brito, J. D. (2017). “Flexural behaviour of reinforced concrete beams made with fine recycled concrete aggregates.” KSCE Journal of Civil Engineering, Vol. 21, No. 1, pp. 353–363, DOI: 10.1007/s12205-016-0653-8.

    Article  Google Scholar 

  • Fujimoto, T., Mukai, A., Nishiyama, I., and Sakino, K. (2004). “Behavior of eccentrically loaded concrete-filled steel tubular columns.” Journal of Structural Engineering, Vol. 130, No. 2, pp. 203–212, DOI: 10.1061/(ASCE)0733-9445(2004)130:2(203).

    Article  Google Scholar 

  • Ghobarah, A. (2009). “Performance-based design in earthquake engineering: State of development.” Engineering Structures, Vol. 23, No. 8, pp. 878–884, DOI: 10.1016/S0141-0296(01)00036-0.

    Article  Google Scholar 

  • Gopal, S. R. (2017). “An experimental study on FRC infilled steel tubular columns under eccentric loading.” KSCE Journal of Civil Engineering, Vol. 21, No. 3, pp. 923–927, DOI: 10.1007/s12205-016-0851-4.

    Article  Google Scholar 

  • Han, L. H. (2000). Concrete-Filled Steel Tube Structure, Science Press, Beijing, China.

    Google Scholar 

  • Han, L. H. (2007). Concrete-Filled Steel Tube Structure—Theory and Practice 2ndEd, Science Press, Beijing, China.

    Google Scholar 

  • Hong, D. N., Tinh, B. Q., Thom, V. D., and Duc, N. D. (2017). “A ratedependent hybrid phase field model for dynamic crack propagation.” Journal of Applied Physics, Vol. 122, No. 11, 115102, DOI: 10.1063/1.4990073.

    Article  Google Scholar 

  • Hou, S. L., Han, L. H., and Song, T. Y. (2014). “Analysis on concreteencased CFST columns under fire.” Engineering Mechanics, Vol. 31, No. Suppl, pp. 109–114, DOI: 1000-4750(2014)Suppl-0109-06.

    Google Scholar 

  • Huang, Y. (2008). “Design and calculation of steel tube-reinforced concrete column.” Steel Construction, Vol. 23, No. 7, pp. 12–19, DOI: 10.3969/j.issn.1007-9963.2008.07.004.

    Google Scholar 

  • Huang, Z. and Ling, L. (2001). “Experimental study and finite element analysis on shear behavior of steel tube fill high strength concrete composite column core area.” Industrial Construction, Vol. 31, No. 7, pp. 50–53, DOI: 10.13204/j.gyjz2001.07.018.

    Google Scholar 

  • Lee, J. and Fenves, G. L. (1998). “Plastic-damage model for cyclic loading of concrete structures.” Journal of Engineering Mechanics, Vol. 124, No. 8, pp. 892–900, DOI: 10.1061/(ASCE)0733-9399(1998)124:8(892).

    Article  Google Scholar 

  • Li, H., Wu, B., and Lin, L. Y. (1998). “Study on seismic properties of laminated column with high strength concrete containing steel tube.” Earthquake Engineering & Engineering Vibration, Vol. 18, No. 1, pp. 45–53, DOI: 10.13197/j.eeev.1998.01.007.

    Google Scholar 

  • Li, H., Liu, K. M., Wu, B., and Zhang, P. (2001). “Calculation for ultimate strength of steel encased high-strength concrete laminated columns.” Journal of Harbin University of Civil Engineering & Architecture, Vol. 34, No. 3, pp. 1–4, DOI: 1006-6780(2001)03-0001-04.

    Google Scholar 

  • Li, Y. J. and Liao, F. Y. (2013). “Behaviour of concrete filled steel tube reinforced concrete columns subjected to long-term sustained loading.” Journal of Beijing University of Technology, Vol. 39, No. 8, pp. 1187–1191, DOI: 0254-0037(2013)08-1187-06.

    Google Scholar 

  • Liao, F. Y. and Han, L. H. (2010). “Performance of concrete-filled steel tube reinforced concrete columns with square sections.” Engineering Mechanics, Vol. 27, No. 4, pp. 153–162, DOI: 1000-4750(2010)04-0153-10.

    Google Scholar 

  • Min, Y. U., Zha, X., Jianqiao, Y. E., and Yuting, L. I. (2013). “A unified formulation for circle and polygon concrete-filled steel tube columns under axial compression.” Engineering Structures, Vol. 49, No. 2, pp. 1–10, DOI: 10.1016/j.engstruct.2012.10.018.

    Google Scholar 

  • Nie, J. G., Wang, Y. H., and Fan, J. S. (2012). “Experimental study on seismic behavior of concrete filled steel tube columns under pure torsion and compression–torsion cyclic load.” Journal of Constructional Steel Research, Vol. 79, No. 1, pp. 115–126, DOI: 10.1016/j.jcsr.2012.07.029.

    Article  Google Scholar 

  • Nie, J. G. (2005). “Analyses on composite column with inside concrete filled steel tube under axial compression.” China Civil Engineering Journal, Vol. 38, No. 9, pp. 9–13, DOI: 10.15951/j.tmgcxb.2005.09.002.

    Google Scholar 

  • Nie, J. G. (2011). Steel-Concrete Combination Structure, China Architecture &Building Press, Beijing, China.

    Google Scholar 

  • Nie, J., Jie, Z., Yu, B., and Yan, X. (2005), “Bearing capacity of axially compressed core columns having concrete-filled steel tubes.” Journal of Tsinghua University, Vol. 45, No. 9, pp. 1153–1156, DOI: 10.16511/j.cnki.qhdxxb.2005.09.001.

    Google Scholar 

  • Nie, J. G., Wang, Y. H., Tao, M. X., and Tan, W. (2012). “Experimental study on seismic behavior of laminated steel tube column-concrete beam joint with outer stiffening ring.” Journal of Building Structures, Vol. 33, No. 7, pp. 88–97, DOI: 10.14006/j.jzjgxb.2012.07.011.

    Google Scholar 

  • PRC, M. O. C. (2003). GB50017-2003, Code for design of steel structures, MOHURD; Beijing, China.

  • PRC, M. O. C. (2015). JGJ/T 101-2015, Specification for seismic test of building, MOHURD; Beijing, China.

  • PRC, M. O. C. (2010). GB50010-2010, Code for design of concrete structures, MOHURD; Beijing, China.

  • Qian, J. R. and Jiang, Y. (2009). “Tests on seismic behavior of RC beamcomposite steel tube confined concrete column joints.” Building Structure, Vol. 39, No. 9, pp. 39–42 (don´t have DOI).

    Google Scholar 

  • Sakino, K., Nakahara, H., Morino, S., and Nishiyama, I. (2004). “Behavior of centrally loaded concrete-filled steel-tube short columns.” Journal of Structural Engineering, Vol. 130, No. 2, pp. 180–188, DOI: 10.1061/(ASCE)0733-9445(2004)130:2(180).

    Article  Google Scholar 

  • Tang, J. R. (1989). Seismic Analysis For Joints of Reinforced Concrete Frame, Southeast University Press, Nanjing, Jiangsu, China.

    Google Scholar 

  • Tinh, Q. B., Duc, H. D., Thom, V. D., Sohichi Hirose, and Duc, N. D. (2016). “High frequency modes mesh free analysis of Reissner-Mindlin plates.” Journal of Science: Advanced Materials and Devices, Vol. 3, No. 1, pp. 400–412, DOI: 10.1016/j.jsamd.2016.08.005.

    Google Scholar 

  • Varma, A. H., Ricles, J. M., Sause, R., and Lu, L. W. (2002). “Seismic behavior and modeling of high-strength composite Concrete-filled Steel Tube (CFT) beam-columns.” Journal of Constructional Steel Research, Vol. 58, Nos. 5–8, pp. 725–1758, DOI: 10.1016/S0143-974X(01)00099-2.

    Article  Google Scholar 

  • Wang, B. (2011), Research on eccentric compression experiment and load-bearing capacity calculation of steel tube-reinforced concrete column, M.S. Thesis, Taiyuan University of Technology, Taiyuan, Shanxi, China.

    Google Scholar 

  • Wang, Q., Zhu, L. L., Li, Z., Wang, Z., and Liu, L. (2013). “Study on the constitutive model of steel for explicit dynamic beam elements of ABAQUS.” China Journal of Civil Engineering, Vol. 46, No. Supp2, pp. 100–105, DOI: 10.15951/j.tmgcxb.2013.s2.027.

    Google Scholar 

  • Wang, W., Li, W. Q., and Chen, Y. (2013). “Experimental study on seismic behavior of concrete filled steel tubular column-to-RC ring beam joints in three dimensional frames.” Journal of Building Structures, Vol. 34, No. Supp1, pp. 66–72, DOI: 1000-6869(2013) S1-0066-07.

    Google Scholar 

  • Wang, X. (2012). Experiments on Seismic Behavior of prestressing steel strip constraint strength concrete composite columns, M.S. Thesis, Xi’an University of Architecture and Technology, Xi’an, Shanxi, China.

    Google Scholar 

  • Xiong, Z. (2012). The analysis of the ultimate bearing capacity of concrete filled steel tubular columns high pier, M.S. Thesis, Zhejiang University of Technology, Hangzhou.

    Google Scholar 

  • Xu, W., Yu, Q., and Yao, G. (2014). “Effect of preload on the axial capacity of CFST reinforced concrete columns.” Journal of Tsinghua University, Vol. 54, No. 5, pp. 556–562, DOI: 10.16511/j.cnki.qhdxxb.2014.05.009.

    Google Scholar 

  • Yao, G. H., Li, Y. J., and Liao, F. (2013). “Behavior of concrete-filled steel tube reinforced concrete columns subjected to axial compression.” Journal of Building Structures, Vol. 34, No. 5, pp. 114–121, DOI: 10.14006/j.jzjgxb.2013.05.013.

    Google Scholar 

  • Zhang, W. (2013). Elastic-plastic Analysis of Steel Tube-reinforced Concrete, M.S. Thesis, Dalian University of Technology, Dalian.

    Google Scholar 

  • Zhong, S.T. (2003). Concrete-Filled Steel Tube Structure, Tsinghua University Press, Beijing, China.

    Google Scholar 

  • Zhou, Y., Yu, H., Qian, J., Hu, K., and Qu, G. (2015a). “Moment capacity calculation method on ring beams of joints of concrete filled steel tubular laminated columns.” Journal of Building Structures, Vol. 36, No. 2, pp. 79–86, DOI: 10.14006/j.jzjgxb.2015.02.010.

    Google Scholar 

  • Zhou, Y., Yu, H.Y., Qian, J., Qu, G., Hu, K., and Chen, Y. (2015b), “Experimental study on ring beams of joints of concrete filled steel tubular laminated columns.” Journal of Building Structures, Vol. 36, No. 2, pp. 69–78, DOI: 10.14006/j.jzjgxb.2015.02.009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingying Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Huang, Y., Lei, K. et al. Seismic Behaviors of Steel Bar Reinforced Joints of Concrete Filled Steel Tubular Laminated Columns. KSCE J Civ Eng 22, 3491–3503 (2018). https://doi.org/10.1007/s12205-017-0685-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-017-0685-8

Keywords

Navigation