Skip to main content
Log in

Deformation behaviour of gap-graded fouled ballast evaluated by a 3D discrete element method

  • Geotechnical Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

The ballast fouling has been identified as a challenging issue in ballasted railway tracks due to huge maintenance costs. In this research, the deformation characteristics of gap-graded fouled ballast were studied from laboratory experiments and a Discrete Element Method (DEM). The fouled ballasts were prepared with different values of a fouling index, FI p. After the packing behaviour of fouled ballasts was studied by density tests, the stress-strain behaviour of them was studied from triaxial compression tests under both dense and loose states. It was found that the void ratio decreases with FI p up to 50%, then it increases with FI p. The results also indicate that the strain-hardening behaviour of ballast is weakened when fouled by FI p ≥ 30%. The DEM simulation by clump particles produce a similar stress-strain behaviour as the laboratory specimens than their spherical counterparts. The results also reveal that the dilation behaviour of ballast is deteriorated significantly when fouled by FI p > 50%. The peak frictional angle indicates that the strength properties of ballast are deteriorated significantly when fouled by FI p ≥ 30%. Therefore, we recommend that fouled ballast should be treated by a maintenance application when ballast is fouled by FI p > 30%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belheine, N., Plassiard, J. P., Donze, F. V., Darve, F., and Seridi, A. (2009). “Numerical simulation of drained triaxial test using 3D discrete element modeling.” Computers and Geotechnics, Vol. 36, Nos. 1-2, pp. 320–331, DOI: 10.1016/j.compgeo.2008.02.003.

    Article  Google Scholar 

  • Cambio, D. and Ge, L. (2007). “Effects of parallel gradation on strength properties of ballast materials.” Advances in Measurement and Modeling of Soil Behavior (DeGroot et al. eds.), ASCE, pp. 1–7, DOI: 10.1061/40917(236)14.

    Chapter  Google Scholar 

  • Cubrinovski, M. and Ishihara, K. (2002). “Maximum and minimum void ratio characteristics of sands.” Soils and Foundations, Vol. 42, No. 6, pp. 65–78, DOI: org/10.3208/sandf.42.6_65.

    Article  Google Scholar 

  • Cundall, P. A. (1971). “A computer model for simulating progressive, large scale movements in blocky rock systems.” Proc., International Symposium on Rock Mechanics, Nancy, France, Vol. 2, pp. 132–150.

    Google Scholar 

  • Cundall, P. A. and Strack, O. D. L. (1979). “A discrete numerical model for granular assemblies.” Geotechnique, Vol. 29, No. 1, pp. 47–65, DOI: 10.1680/geot.1979.29.1.47.

    Article  Google Scholar 

  • Dang, H. K. and Meguid, M. A. (2010). “Algorithm to generate a discrete element specimen with predefined properties.” International Journal of Geomechanics, Vol. 10, No. 2, pp. 85–91, DOI: 10.1061/(ASCE)GM.1943-5622.0000028.

    Article  Google Scholar 

  • Huang, H. and Tutumluer, E. (2011). “Discrete element modelling for fouled railroad ballast.” Construction and Building Materials, Vol. 25, No. 8, pp. 3306–3312, DOI: 10.1016/j.conbuildmat.2011.03.019.

    Article  Google Scholar 

  • Indraratna, B. and Salim, W. (2005). Mechanics of Ballasted Rail Tracks–A Geotechnical Perspective. Taylor and Francis, London.

    Google Scholar 

  • Indraratna, B., Ionescu, D., and Christie, H. D. (1998). “Shear behaviour of railway ballast based on large scale triaxial testing.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 124, No. 5, pp. 439–449, DOI: 10.1061/(ASCE)1090-0241(1998)124:5(439).

    Article  Google Scholar 

  • Indraratna, B., Ngo, N., Rujikiatkamjorn, C., and Vinod, J. S. (2014). “Behavior of fresh and fouled railway ballast subjected to direct shear testing: Discrete element simulation.” International Journal of Geomechanics, Vol. 14, No. 1, pp. 34–44, DOI: 10.1061/(ASCE) GM.1943-5622.0000264.

    Article  Google Scholar 

  • Indraratna, B., Shahin, M. A., and Salim, W. (2007). “Stabilisation of granular media and formation soil using geosynthetics with special reference to railway engineering.” Ground Improvement, Vol. 11, No. 1, pp. 27–43, DOI: 10.1680/grim.2007.11.1.27.

    Article  Google Scholar 

  • Ionescu, D. (2004). “Evaluation of the engineering behaviour of railway ballast.” Ph.D. Dissertation, University of Wollongong, Wollongong, Australia.

    Google Scholar 

  • JGS (1998). Method for triaxial compression test on unsaturated soils. Japanese Geotechnical Society (JGS), JGS 0527, Tokyo, Japan.

    Google Scholar 

  • Jiang, M. J., Yan, H. B., Zhu, H. H., and Utili, S. (2011). “Modeling shear behavior and strain localization in cemented sands by twodimensional distinct element method analyses.” Computers and Geotechnics, Vol. 38, No. 1, pp. 14–29, DOI: 10.1016/j.compgeo. 2010.09.001.

    Article  Google Scholar 

  • JIS (2009). Test method for minimum and maximum densities of sands. Japanese Industrial Standards (JIS), JIS A 1224, Tokyo, Japan.

    Google Scholar 

  • Kozicki, J. and Donze, F. V. (2008). “A new open-source software developed for numerical simulations using discrete modeling methods.” Computer Methods in Applied Mechanics and Engineering, Vol. 197, No. 49-50, pp. 4429–4443, DOI: 10.1016/j.cma.2008.05.023.

    Article  MATH  Google Scholar 

  • Kumara, G. H. A. J. J. (2013). Development of prediction methods for deformation characteristics of fouled ballasts based on laboratory experiments and discrete element method. Ph.D. Dissertation, Yokohama National University, Yokohama, Japan.

    Google Scholar 

  • Kumara, G. H. A. J. J., Hayano, K., Sasaki, K., and Shigekuni, Y. (2012a). Evaluation of void ratio characteristics of sand-gravel mixtures with different PSD curves by 3D DEM simulations. Proc., 14th JSCE International Summer Symposium, Nagoya, Japan, pp. 79–80.

    Google Scholar 

  • Kumara, J. and Hayano, K. (2013). “Model tests on settlement behaviour of ballasts subjected to sand intrusion and tie tamping application.” Proc., 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, France, pp. 1305–1308.

    Google Scholar 

  • Kumara, J. J., Hayano, K., Shigekuni, Y., and Sasaki, K. (2012b). “DEM simulations and laboratory experiments on physical and mechanical properties of sand-gravel mixtures.” Proc., 2nd International Conference on Geotechnics, Construction Materials and Environment, Kuala Lumpur, Malaysia, pp. 549–554.

    Google Scholar 

  • Kumara, J., Hayano, K., Shigekuni, Y., and Sasaki, K. (2013). “Physical and mechanical properties of sand-gravel mixtures evaluated from DEM simulation and laboratory triaxial test.” International Journal of GEOMATE, Vol. 4, No. 2, pp. 546–551.

    Google Scholar 

  • Lackenby, J., Indraratna, B., McDowell, G., and Christies, D. (2007). “Effect of confining pressure on ballast degradation and deformation under cyclic triaxial loading.” Geotechnique, Vol. 57, No. 6, pp. 527–536, DOI: 10.1680/geot.2007.57.6.527.

    Article  Google Scholar 

  • Lade, P. V., Liggio, C. D., and Yamamuro, J. A. (1998). “Effects of nonplastic fines on minimum and maximum void ratios of sand.” Geotechnical Testing Journal, Vol. 21, No. 4, pp. 336–347, DOI: 10.1520/GTJ11373J.

    Article  Google Scholar 

  • Lin, X. and Ng, T. T. (1997). “A three-dimensional discrete element model using arrays of ellipsoids.” Geotechnique, Vol. 47, No. 2, pp. 319–329, DOI: 10.1680/geot.1997.47.2.319.

    Article  Google Scholar 

  • McDowell, G., Li, H. and Lowndes, I. (2011). “The importance of particle shape in discrete-element modelling of particle flow in a chute.” Geotechnique Letters, Vol. 1, No. 3, pp. 59–64, DOI: 10.1680/geolett.11.00025.

    Article  Google Scholar 

  • Ngo, N. T., Indraratna, B., and Rujikiatkamjorn, C. (2014). “DEM simulation of the behaviour of geogrid stabilised ballast fouled with coal.” Computers and Geotechnics, Vol. 55, pp. 224–231, DOI: 10.1016/j.compgeo.2013.09.008.

    Article  Google Scholar 

  • Pen, L. M. L., Powrie, W., Zervos, A., Ahmed, S., and Aingaran, S. (2013). “Dependence of shape on particle size for a crushed rock railway ballast.” Granular Matter, Vol. 15, No. 6, pp. 849–961, DOI: 10.1007/s10035-013-0437-5.

    Article  Google Scholar 

  • Raymond, G. P. (2002). “Reinforced ballast behaviour subjected to repeated load.” Geotextiles and Geomembranes, Vol. 20, No. 1, pp. 39–61, DOI: 10.1016/S0266-1144(01)00024-3.

    Article  Google Scholar 

  • Rothenburg, L. and Bathurst, R. J. (1992). “Micromechanical features of granular materials with planar elliptical particles.” Geotechnique, Vol. 42, No. 1, pp. 79–95, DOI: 10.1680/geot.1992.42.1.79.

    Article  Google Scholar 

  • Salot, C., Gotteland, P., and Villard, P. (2009). “Influence of relative density on granular materials behavior: DEM simulations of triaxial tests”. Granular Matter, Vol. 11, No. 4, pp. 221–236, DOI: 10.1007/s10035-009-0138-2.

  • Scholtes, L., Chareyre, B., Nicot, F., and Darve, F. (2009). “Micromechanics of granular materials with capillary effects.” International Journal of Engineering Science, Vol. 47, No. 1, pp. 64–75, DOI: 10.1016/j.ijengsci.2008.07.002.

    Article  MathSciNet  MATH  Google Scholar 

  • Selig, E. T. and Waters, J. M. (1994). Track Geotechnology and Substructure Management. Thomas Telford, London.

    Book  Google Scholar 

  • Sevi, A. and Ge, L. (2012). “Cyclic behaviors of railroad ballast within the parallel gradation scaling framework.” Journal of Materials in Civil Engineering, Vol. 24, No. 7, pp. 797–804, DOI: 10.1061/(ASCE)MT.1943-5533.0000460.

    Article  Google Scholar 

  • Smilauer, V., Catalano, E., Chareyre, B., Dorofeenko, S., Duriez, J., Gladky, A., Kozicki, J., Modenese, C., Scholtes, L., Sibille, L., Stransky, J., and Thoeni, K. (2010), Yade Reference Documentation, in Yade Documentation (V. Smilauer, ed.), The Yade Project, 1st ed. (http://yade-dem.org/doc/).

    Google Scholar 

  • Szarf, K., Combe, G., and Villard, P. (2011). “Polygons vs. clumps of discs: A numerical study of the influence of grain shape on the mechanical behaviour of granular materials.” Powder Technology, Vol. 208, No. 2, pp. 279–288, DOI: 10.1016/j.powtec.2010.08.017.

    Article  Google Scholar 

  • Thakur, P. K., Vinod, J. S., and Indraratna, B. (2010). “Effect of particle breakage on cyclic densification of ballast: A DEM approach.” Proc., 9th World Congress on Computational Mechanics, Sydney, Australia, pp. 1–7, DOI: 10.1088/1757-899X/10/1/012229.

    Google Scholar 

  • Thakur, P. K., Vinod, J. S., and Indraratna, B. (2012). “Effect of confining pressure and frequency on the deformation of ballast.” Geotechnique, Vol. 63, No. 9, pp. 786–790, DOI: 10.1680/geot.12.T.001.

    Article  Google Scholar 

  • Widlinski, L., Kozicki, J., and Tejchman, J. (2009). “Numerical simulations of triaxial test with sand using DEM.” Archives of Hydro-Engineering and Environmental Engineering, Vol. 56, Nos. 3-4, pp. 149–171.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janaka J. Kumara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumara, J.J., Hayano, K. & Kikuchi, Y. Deformation behaviour of gap-graded fouled ballast evaluated by a 3D discrete element method. KSCE J Civ Eng 20, 2345–2354 (2016). https://doi.org/10.1007/s12205-015-0377-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-015-0377-1

Keywords

Navigation