Skip to main content
Log in

A new predictive model for restrained distortional buckling strength of half-through bridge girders using artificial neural network

  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

Half-through girders are not affected by conventional lateral-torsional buckling. I-section beams of simply supported half-through girders experience compression in their top flanges and tension in their bottom flanges. In this condition, the compression flange is restrained only by the stiffness of the web, and the buckling mode is generally restrained distortional. In this study, new and efficient model is derived to predict the Restrained Distortional Buckling (RDB) strength of half-through I-section bridge girders utilizing an Artificial Neural Network (ANN). The model is developed based on a reliable database obtained from the nonlinear finite element (FE) method. To verify the accuracy of the derived model, it is applied to estimate the RDB strength of parts of the FE analysis results that were not included in the modeling process. A sensitivity analysis has been also developed to determine the importance of each input parameters. ANN model is further compared to the some existing design codes. The results indicate that the proposed model is effectively capable of evaluating the RDB load of the half-through girders. The prediction performance of the ANN model is markedly better than prediction of the AISC/LRFD and the AS4100 specifications. The ANN-based design equation can reliably be employed for pre-design applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ABAQUS user’s manual, version 6.9. Pawtucket, RI: Hibbit, Karlsson & Sorenson, 2005.

    Google Scholar 

  • AISC Specification for structural steel buildings (AISC 360-05) (2005). Chicago (IL): American Institute of Steel Construction.

    Google Scholar 

  • Alavi, A. H. and Gandomi, A. H. (2009). “Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural networks and simulated annealing.” Computers and Structures, Vol. 89, Nos. 23–24, pp. 2176–94, DOI: 10.1016/j.compstruc.2011.08.019

    Google Scholar 

  • AS4100 Steel Structures (1998). Standards Australia, Sydney.

    Google Scholar 

  • Bradford, M. A. (1992). “Lateral distortional buckling of steel I-section members.” Journal of Constructional Steel Research, Vol. 23, pp. 97–116, DOI: 10.1016/0143-974X(92)90038-G

    Article  Google Scholar 

  • Bradford, M. A. (1997). “Lateral-distortional buckling of continuously restrained columns.” Journal of Constructional Steel Research, Vol. 42, No. 2, pp. 121–39, DOI: 10.1016/S0143-974X(97)00023-0

    Article  MathSciNet  Google Scholar 

  • Bradford, M. A. (1998). “Inelastic buckling of I-beams with continuous elastic tension flange restraint.” Journal of Constructional Steel Research, Vol. 48, Nos. 2–3, pp. 63–77, DOI: 10.1016/S0143-974X(98)90195-X

    Article  Google Scholar 

  • Bradford, M. A. (2000). “Strength of compact steel beams with partial restraint.” Journal of Constructional Steel Research, Vol. 53, No. 2, pp. 183–200, DOI: 10.1016/S0143-974X(99)00066-8

    Article  Google Scholar 

  • Bradford, M. A. and Wee, A. (1994). “Analysis of buckling tests on beams on seat supports.” Journal of Constructional Steel Research, Vol. 28, pp. 227–42, DOI: 10.1016/0143-974X(94)90065-5

    Article  Google Scholar 

  • Fausett, L. (1994). Fundamentals of neural networks, architectures, algorithms, and applications, New Jersey: Prentice-Hall.

    MATH  Google Scholar 

  • Fonseca, E. T., Andrade, S. A. L., and Vellasco, P. C. G. D. (2007). “A parametric analysis of the patch load behaviour using a neuro-fuzzy system.” Journal of Constructional Steel Research, Vol. 63, pp. 194–210, DOI: 10.1016/j.jcsr.2006.04.005

    Article  Google Scholar 

  • Fonseca, E. T., Vellasco, P. C. G., Andrade, S. A. L., and Vellasco, M. M. B. R. (2003). “Neural network evaluations of steel beam patch load capacity.” Advances in Engineering Software, Vol. 34, Nos. 11–12, pp. 763–72, DOI: 10.1016/S0965-9978(03)00104-2

    Article  Google Scholar 

  • Fonseca, E. T., Vellasco, P. C. G., Andrade, S. A. L., and Vellasco, M. M. B. R. (2003). “A patch load parametric analysis using neural Networks.” Journal of Constructional Steel Research, Vol. 59, No. 2, pp. 251–67, DOI: 10.1016/S0143-974X(02)00024-X

    Article  Google Scholar 

  • Garson, G. D. (1991). “Interpreting neural-network connection weights.” AI Expert, Vol. 6, pp. 47–51.

    Google Scholar 

  • Gholizadeh, S., Pirmoz, A., Attarnejad, R. (2011). “Assessment of load carrying capacity of castellated steel beams by neural networks.” Journal of Constructional Steel Research, Vol. 67, pp. 770–779. DOI: 10.1016/j.jcsr.2011.01.001

    Article  Google Scholar 

  • Goh, A. T. C., Wong, K. S., and Broms, B. B. (1995). “Multivariate modelling of FEM data using neural networks.” Developments in neural networks and evolutionary computing for civil and structural engineering, Edinburgh, UK: Proceedings of the Civil-Comp Press.

    Google Scholar 

  • Guzelbey, I. H., Cevikb, A., and Gogus, M. T. (2006). “Prediction of rotation capacity of wide flange beams using neural networks.” Journal of Constructional Steel Research, Vol. 62, pp. 950–61, DOI: 10.1016/j.jcsr.2006.01.003

    Article  Google Scholar 

  • Hajela, P. and Berke, L. (1992). “Neural networks in structural analysis and design: an overview.” J Comput Syst Eng, Vol. 3, pp. 525–38, DOI: 10.1016/0956-0521(92)90138-9

    Article  Google Scholar 

  • Hancock, G. J., Bradford, M. A., and Trahair, N. S. (1980). “Web distortion and flexural-torsional buckling.” Journal of the Structural Division, Vol. 106, No. 7, pp. 1557–1571.

    Google Scholar 

  • Hristev, R. M. (1998). The ANN book, GNU public license.

    Google Scholar 

  • Jenkins, W. M. (1995). “Neural network-based approximations for structural analysis.” Developments in neural networks and evolutionary computing for civil and structural engineering. Edinburgh, UK: Proceedings of the Civil-Comp Press.

    Google Scholar 

  • Jixiang, X., Jincheng, Z., Wanzhen, W., and Minglu, L. (2013). “Prediction of temperature of tubular truss under fire using artificial neural networks.” Fire Safety Journal, Vol. 56, pp. 74–80, DOI: 10.1016/j.firesaf.2013.01.006

    Article  Google Scholar 

  • Kalkan, I. and Buyukkaragoz, A. (2012). “A numerical and analytical study on distortional buckling of doubly-symmetric steel I-beams.” Journal of Constructional Steel Research, Vol. 70, pp. 289–297. DOI: 10.1016/j.jcsr.2011.06.006

    Article  Google Scholar 

  • Marquardt, D. (1963). “An algorithm for least squares estimation of non-linear parameters.” J Soc Ind Appl Math, Vol. 11, pp. 431–41.

    Article  MATH  Google Scholar 

  • Ok, D., Pu, Y., and Incecik, A. (2006). “Artificial neural networks and their application to assessment of ultimate strength of plates with pitting corrosion.” Ocean Engineering, Vol. 34, pp. 2222–2230, DOI: 10.1016/j.oceaneng.2007.06.007

    Article  Google Scholar 

  • Pu, Y. and Mesbahi, E. (2006). “Application of artificial neural networks to evaluation of ultimate strength of steel panels.” Engineering Structures, Vol. 28, pp. 1190–1196, DOI: 10.1016/j.engstruct.2005.12.009

    Article  Google Scholar 

  • Roberts, T. M. and Jhita, P. S. (1983). “Lateral, local and distortional buckling of I-beams.” Thin-Walled Struct, Vol. 1, pp. 289–308, DOI: 10.1016/0263-8231(83)90011-3

    Article  Google Scholar 

  • Sharifi, Y. (2011). “Reliability of deteriorating steel box-girder bridges under pitting corrosion.” Advanced Steel Construction, Vol. 7, No. 3, pp. 220–238, DOI: 10.18057/IJASC.2011.7.3.2

    MathSciNet  Google Scholar 

  • Sharifi, Y. and Paik, J. K. (2010). “Environmental effects on ultimate strength reliability of corroded steel box girder bridges.” Structural Longevity, Vol. 18, No. 1, pp. 1–20.

    Google Scholar 

  • Sharifi, Y. and Paik, J. K. (2011). “Ultimate strength reliability analysis of corroded steel-box girder bridges.” Thin-Walled Structures, Vol. 49, No. 1, pp. 157–166, DOI: 10.1016/j.tws.2010.09.001

    Article  Google Scholar 

  • Sharifi, Y. and Paik, J. K. (2014). “Maintenance and repair scheme for corroded stiffened steel box girder bridges based on ultimate strength reliability and risk assessments.” Engineering Structures and Technologies, Vol. 6, No. 3, pp. 43–53, DOI: 10.3846/2029882X.2014.972991

    Article  Google Scholar 

  • Sharifi, Y. and Tohidi, S. (2014). “Lateral-torsional buckling capacity assessment of web opening steel girders by artificial neural networks–elastic investigation.” Frontiers of Structural and Civil Engineering, Vol. 8, No. 2, pp. 167–177, DOI: 10.1007/s11709-014-0236-z

    Article  Google Scholar 

  • Sharifi, Y. and Tohidi, S. (2014). “Ultimate capacity assessment of web plate beams with pitting corrosion subjected to patch loading by artificial neural networks.” Advanced Steel Construction, Vol. 10, No. 3, pp. 325–350, DOI: 10.18057/IJASC.2014.10.3.5

    Google Scholar 

  • Sheidaii, M. R. and Bahraminejad, R. (2012). “Evaluation of compression member buckling and post-buckling behavior using artificial neural network.” Journal of Constructional Steel Research, Vol. 70, pp. 71–77, DOI: 10.1016/j.jcsr.2011.10.020

    Article  Google Scholar 

  • Svensson, S. E. (1985). “Lateral buckling of beams analysed as elastically supported columns subject to a varying axial force.” Journal of Constructional Steel Research, Vol. 5, No. 3, pp. 179–193. DOI: 10.1016/0143-974X(85)90002-1

    Article  Google Scholar 

  • Tohidi, S. and Sharifi, Y. (2014). “Inelastic lateral-torsional buckling capacity of corroded web opening steel beams using artificial neural networks.” The IES Journal Part A:Civil & Structural Engineering, Vol. 8, No. 1, pp. 24–40, DOI: 10.1080/19373260.2014.955139

    Google Scholar 

  • Tohidi, S. and Sharifi, Y. (2014). “Restrained distortional buckling capacity of half through bridge girders.” The IES Journal Part A:Civil & Structural Engineering, Vol. 7, No. 3, pp. 163–173, DOI: 10.1080/19373260.2014.921400

    Google Scholar 

  • Tohidi, S. and Sharifi, Y. (2015). “Neural networks for inelastic distortional buckling capacity assessment of steel I-beams.” Thin-Walled Structures, Vol. 94, No. 9, pp. 359–371, DOI: 10.1016/j.tws.2015.04.023

    Article  Google Scholar 

  • Topping, B. H. V. and Bahreininejad, A. (1995). “Subdomain generation using parallel Q-state potts neural networks.” Developments in neural networks and evolutionary computing for civil and structural engineering. Edinburgh, UK: Proceedings of the CivilComp Press.

    Chapter  Google Scholar 

  • Williams, F. W. and Jemah, A. K. (1987). “Buckling curves for elastically supported columns with varying axial force, to predict lateral buckling of beams.” Journal of Constructional Steel Research, Vol. 7, No. 2, pp. 133–47, DOI:10.1016/0143-974X(87)90025-3

    Article  Google Scholar 

  • Zirakian, T. and Showkati, H. (2007). “Experiments on distortional buckling of I-beams.” Journal of Structural Engineering, Vol. 133, pp. 1009–17, DOI: 10.1061/(ASCE)0733-9445

    Article  Google Scholar 

  • Çevik, A. (2007). “A new formulation for longitudinally stiffened webs subjected to patch loading.” Journal of Constructional Steel Research, Vol. 63, pp. 1328–40, DOI: 10.1016/j.jcsr.2006.12.004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasser Sharifi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tohidi, S., Sharifi, Y. A new predictive model for restrained distortional buckling strength of half-through bridge girders using artificial neural network. KSCE J Civ Eng 20, 1392–1403 (2016). https://doi.org/10.1007/s12205-015-0176-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-015-0176-8

Keywords

Navigation