Skip to main content
Log in

Postbuckling behavior of stringer versus ring reinforced geometrically imperfect cylindrical shells under pure torsion

  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

This paper deals with the buckling and initial-postbuckling behavior and imperfection-sensitivity of stringer or ring stiffened cylindrical shells under pure torsion. In particular, the effectiveness of stringer versus ring reinforced shells is examined for various types of stiffener and shell parameters under different boundary condition. The initial-postbuckling single-mode analysis is performed using Koiter’s general theory of elastic stability. By changing the parameters of stringer or ring, we are able to find out how does the stringer or ring affecting the buckling and post-buckling behavior of cylindrical shells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrianov, I. V. and Awrejcewicz, J. (2008). “Homogenization of rods and plates with weakenings.” Mechanics Research Communications, Vol. 35, Issue 6, pp. 372–375.

    Article  MATH  Google Scholar 

  • Andrianov, I. V., Awrejcewicz, J., and Diskovsky, A. A. (2011). “On the optimal ring support of a cylindrical shell.” Journal of Mechanical Engineering Science, Vol. 225, pp. 2457–2463.

    Article  Google Scholar 

  • Andrianov, I. V., Awrejcewicz, J., and Pasichnik, I. V. (2006). “Dynamics of a reinforced viscoelastic plate.” Mathematical Problems in Engineering, DOI: 10.1155/MPE/2006/89657.

    Google Scholar 

  • Andrianov, I. V., Verbonol, V. M., and Awrejcewicz, J. (2006). “Buckling analysis of discretely stringer-stiffened cylindrical shells.” International Journal of Mechanical Sciences, Vol. 48, Issue 12, pp. 1505–1515.

    Article  MATH  Google Scholar 

  • Batdorf, S. B., Stein, M., and Schildcrout, M. (1947). Crical stress of thin-walled cylinders in torsion, NACA Technical Note No. 1344.

    Google Scholar 

  • Bich, D. H., Nam, V. H., and Phuong, N. T. (2011). “Nonlinear postbuckling of eccentrically stiffened functionally graded plates and shallow shells.” Vietnam J. Mech., Vol. 3, pp. 131–147.

    Google Scholar 

  • Boros, I. E. (1975). Effect of shape imperfection on the buckling of stiffened cylinders, Univ. of Toronto Institute for Aerospace Studies, UTIAS Report No. 200, May.

    Google Scholar 

  • Budiansky, B. (1967). “Post-buckling behavior of cylinders in torsion.” Theory of Thin Shells, IUTAM Symposium, Niordon, F. L., ed., SpringerVerlag, 1969, pp. 212–233.

    Google Scholar 

  • Budiansky, B. and Hutchinson, J. W. (1966). “Dynamic buckling of imperfection-sensitive structures.” Proceedings of 11th Int. Congress of Applied Mechanics, Munich (Edited by H. Gortler) 1964, Springer, Berlin, pp. 636–651.

    Google Scholar 

  • Donnell, L. H. (1933). Stability of thin-walled tubes under torsion, NACA Report No. 479.

    Google Scholar 

  • Dung, D. V. and Hoa, L. K. (2013). “Nonlinear buckling and postbuckling analysis of eccentrically stiffened functionally graded circular cylindrical shells under external pressure.” Thin-Walled Struct., Vol. 63, pp. 117–124.

    Article  Google Scholar 

  • Hui, D. (1984). “Shear buckling of anti-symmetric cross ply rctangularplates.” Fibre Science & Technology, Vol. 21, Issue 4, pp. 327–340.

    Article  MathSciNet  Google Scholar 

  • Hui, D. (1985). “Amplitude modulation theory and its application to two-mode buckling problems.” Journal of Applied Mathematics and Physics (ZAMP), Vol. 35, pp. 789–802.

    Article  MathSciNet  Google Scholar 

  • Hui, D. (1986). “Imperfection sensitivity of axially compressed laminated flat plates due to bending-stretching coupling.” Int. J. Solids Structures, Vol. 22, No. 1, pp. 13–22.

    Article  MATH  Google Scholar 

  • Hui, D., Tennyson, R. C., and Hansen, J. S. (1981). “Mode interation of axially stiffened cylindrical shells: Effects of stringer axial stiffness, torsional rigidity and eccentricity.” ASME J. of Applied Mechanics, Vol. 48, No. 4, pp. 915–922.

    Article  MATH  Google Scholar 

  • Hui, D. and Du, I. H. Y. (1987a). “Imperfection-sensitivity of long antisymmetric cross-ply cylindrical panels under shear loads.” ASME Journal of Applied Mechanics, Vol. 54, No. 2, pp. 292–298.

    Article  MATH  Google Scholar 

  • Hui, D. and Du, I. H. Y. (1987b). “Initial postbuckling behavior of imperfect antisymmetric cross-ply cylindrical shells under torsion.” ASME Journal of Applied Mechanics, Vol. 54, No. 1, pp. 174–180.

    Article  MATH  Google Scholar 

  • Hutchinson, J. W. and Amazigo, J. C. (1967). “Imperfection-sensitivity of eccentrically stiffened cylindrical shells.” AIAA Journal, Vol. 5, No. 3, pp. 392–401.

    Article  Google Scholar 

  • Kodama, S., Otomo, K., and Yamaki, N. (1981). “Postbuckling behavior of pressurized circular cylindrical shells under torsion, part 1: Experiment.” Int. J. of Non-linear Mechanics, Vol. 16, Nos. 3–4, 1981, pp. 337–353.

    Article  MATH  Google Scholar 

  • Koiter, W. T. (1945). On the stability of elastic equilibrium, PhD Thesis, Delf, The Netherlands; English translations: NASA TT F-10, 833, 1967 and AFFDL-TR-70-25, 1970.

    Google Scholar 

  • Lennon, R. and Das, P. (2000). “Torsional buckling behavior of stiffened cylinder under combined load.” Thin-Walled Structures, Vol. 38, Issue 3, pp. 229–245.

    Article  Google Scholar 

  • Loo, T. T. (1954). “Effects of large deflections and imperfection on the elastic buckling of cylinders under torsion and axial compression.” Proc. Second U. S. Nat. Cong. Appl. Mech., pp. 345–357.

    Google Scholar 

  • Meyer-Piening, H. R., Farshad, M., Geier, B., and Zimmermann, R. (2001). “Buckling loads of CFRP composite cylinders under combined axial and torsion loading-experiments and computations.” Composite Structures, Vol. 53, Issue 4, pp. 427–435.

    Article  Google Scholar 

  • Najafizadeh, M. M., Hasani, A., and Khazaeinejad, P. (2009). “Mechanical stability of functionally graded stiffened cylindrical shells.” Appl. Math. Model, Vol. 3, pp. 131–147.

    MathSciNet  Google Scholar 

  • Najafov, A. M., Sofiyev, A. H., and Kuruoglu, N. (2013). “Torsional vibration and stability of functionally graded orthotropic cylindrical shells on elastic foundations.” Meccanica, Vol. 48, pp. 829–840.

    Article  MathSciNet  MATH  Google Scholar 

  • Nash, W. A. (1957). “Buckling of initially imperfect cylindrical shells subject to torsion.” J. Appl. Mech., Vol. 24, pp. 125–130.

    MathSciNet  MATH  Google Scholar 

  • Nash, W. A. (1959). “An experimental analysis of buckling of thin initially imperfect cylindrical shells subjected to torsion.” Proc. of Society of Experimental Stress Analysis, Vol. 16, pp. 55–68.

    Google Scholar 

  • Paimushin, V. N. (2007). “Torsional, flexural, and torsional-flexural buckling modes of a cylindrical shell under combined loading.” Mech. Solid, Vol. 42, No. 3, pp. 437–446.

    Article  Google Scholar 

  • Sheinman, I. and Simitses, G. J. (1977). “Buckling of imperfect stiffened cylinders under destabilizing loads, including trosion.” AIAA Journal, Vol. 15, No. 12, pp. 1699–1703.

    Article  MATH  Google Scholar 

  • Shen, H. S. (2009). “Torsional buckling and postbuckling of FGM cylindrical shells in thermal environments.” International Journal of Non-Linear Mechanics, Vol. 44, Issue 6, pp. 664–657.

    Article  Google Scholar 

  • Shen, H. S. and Xiang, Y. (2008). “Buckling and post-buckling of anisotropic laminated cylindrical shells under combined axial compression and torsion.” Compos. Struct., Vol. 84, pp. 375–386.

    Article  Google Scholar 

  • Sofiyev, A. H. (2003). “Torsional buckling of cross-ply laminated orthotropic composite cylindrical shells subject to dynamic loading.” European Journal of Mechanics A/Solids, Vol. 22, Issue 6, pp. 943–851.

    Article  MATH  Google Scholar 

  • Sofiyev, A. H. and Kuruoglu, N. (2013). “Torsional vibration and buckling of the cylindrical shell with functionally graded coatings surrounded by an elastic medium.” Composites Part B: Engineering, Vol. 45, Issue 1, pp. 1133–1142.

    Article  Google Scholar 

  • Sofiyev, A. H. and Schnack, E. (2004). “The stability of functionally graded cylindrical shells under linearly increasing dynamic torsional loading.” Jornal of Engineering Structures, Vol 26, Issue 10, pp. 1321–1331.

    Article  Google Scholar 

  • Sofiyev, A. H., Ay, Z., and Sofiyev, A. (2003). “The dynamic buckling of an orthotropic cylindrical thin shell under torsion varying as a power function of time.” Acta Mechanica Solida Sinica, Vol. 16, No. 1, pp. 31–37.

    Google Scholar 

  • Van der Neut, A. (1947). “General instability of stiffened cylindrical shells under axial compression.” National Luchtvaartlaboratorium, Holland, Vol. 13, Rept. S, p. 3–4.

    Google Scholar 

  • Weigarten, V. I. (1962). “The effect of internal pressure and axial tension on the buckling of cylindrical shells under torsion.” Proc. of 4th U.S. National Congress of Applied Mechanics, ASME, Vol. 2, pp. 827–842.

    Google Scholar 

  • Yamaki, N. and Kodama, S. (1966). Buckling of circular cylindrical shells under torsion, report 1, Institute of High Speed Mechanics, Vol. 17, pp. 171–184, Japan.

    Google Scholar 

  • Yamaki, N. and Kodama, S. (1967). Buckling of circular cylindrical shells under torsion, report 2. Institute of High Speed Mechanics, Vol. 18, pp. 121–142, Japan.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Hui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, I., Xu, H., Hui, D. et al. Postbuckling behavior of stringer versus ring reinforced geometrically imperfect cylindrical shells under pure torsion. KSCE J Civ Eng 19, 248–258 (2015). https://doi.org/10.1007/s12205-014-0604-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-014-0604-1

Keywords

Navigation