Skip to main content
Log in

Influence of Height of Bionic Hexagonal Texture on Tactile Perception

仿生六边形微凸起纹理高度对摩擦触觉感知的影响

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

It is significant to process textures with special functions similar to animal surfaces based on bionics and improve the friction stability and contact comfort of contact surfaces for the surface texture design of tactile products. In this paper, a bionic hexagonal micro-convex texture was prepared on an acrylic surface by laser processing. The friction mechanism of a finger touching the bionic hexagonal micro-convex texture under different touch speeds and pressures, and the effect of the height of the texture on tactile perception were investigated by finite element, subjective evaluation, friction, and EEG tests. The results showed that the deformation friction was the main friction component when the finger touched the bionic hexagonal texture, and the slipperiness and friction factor showed a significant negative correlation. As the touch speed decreased or the touch force increased, the hysteresis friction of the fingers as well as the interlocking friction increased, and the slipperiness perception decreased. The bionic hexagonal texture with higher convexity caused a higher friction factor, lower slipperiness perception, and lower P300 peak. Hexagonal textures with lower convexity, lower friction factor, and higher slipperiness perception required greater brain attentional resources and intensity of tactile information processing during tactile perception.

摘要

从仿生学角度出发,加工出类似动物表面具有特殊功能的纹理,进而提高接触表面摩擦稳定性和接触舒适性对于触肤产品的表面纹理设计具有重要的指导意义。本文采用激光加工方式在亚克力表面制备了仿生六边形微凸纹理。通过有限元、认知行为学、摩擦学和脑电试验研究了不同触摸速度、压力条件下手指触摸仿生六边形微凸纹理的摩擦机理,探究了仿生六边形微凸纹理高度变化对于摩擦触觉感知的影响。研究表明形变摩擦力是手指触摸仿生六边形微凸纹理的主要摩擦分量,滑溜感和摩擦因数呈现显著负相关关系。随着触摸速度减小或触摸压力增大,手指的滞后摩擦以及互锁摩擦呈增大趋势,滑溜感呈减小趋势。触摸凸起高的仿生六边形纹理引起的摩擦因数大、滑溜感小、P300峰值低。纹理凸起低、摩擦因数小、滑溜感高的六边形微凸纹理在触觉感知过程中需要较大的大脑注意资源和触感信息加工强度。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ZHANG L. Materials touch use in product design [J]. Design, 2015(15): 112–113 (in Chinese).

  2. OKAMOTO S, NAGANO H, YAMADA Y. Psychophysical dimensions of tactile perception of textures [J]. IEEE Transactions on Haptics, 2013, 6(1): 81–93.

    Article  Google Scholar 

  3. CRAMPHORN L, WARD-CHERRIER B, LEPORA N F. Addition of a biomimetic fingerprint on an artificial fingertip enhances tactile spatial acuity [J]. IEEE Robotics and Automation Letters, 2017, 2(3): 1336–1343.

    Article  Google Scholar 

  4. CESINI I, NDENGUE J D, CHATELET E, et al. Correlation between friction-induced vibrations and tactile perception during exploration tasks of isotropic and periodic textures [J]. Tribology International, 2018, 120: 330–339.

    Article  Google Scholar 

  5. TANG W, ZHANG M, YANG L, et al. Tactile perception of rough surface using friction and electroen-cephalography methods [J]. Tribology, 2022, 42(4): 764–774 (in Chinese).

    Google Scholar 

  6. LIU T F, LI Y Y, LI W, et al. Influence of surface feature height of deterministic texture on tactile perception of fingertip [J]. Journal of Southwest Jiaotong University, 2020, 55(2): 372–378 (in Chinese).

    MathSciNet  Google Scholar 

  7. TYMMS C, ZORIN D, GARDNER E P. Tactile perception of the roughness of 3D-printed textures [J]. Journal of Neurophysiology, 2018, 119(3): 862–876.

    Article  Google Scholar 

  8. YAN D F, LIU Z A, PAN W H, et al. Researchstatus on the fabrication and application of multifunctional superhydrophobic surfaces [J]. Surface Technology, 2021, 50(5): 1–19 (in Chinese).

    Google Scholar 

  9. TUO Y J, CHEN W P, ZHANG H F, et al. One-step hydrothermal method to fabricate drag reduction su-perhydrophobic surface on aluminum foil [J]. Applied Surface Science, 2018, 446: 230–235.

    Article  Google Scholar 

  10. HU J. The flexible ECG microelectrode arrays based on gecko bionic structure [D]. Xi’an: Xidian University, 2015 (in Chinese).

    Google Scholar 

  11. WU X. Research on the bio-inspired dry adhesive mechanism and the wall-climbing robot [D]. Hefei: University of Science and Technology of China, 2015 (in Chinese).

    Google Scholar 

  12. MU Q. Research on tribological properties of bionic hexagonal pillar-textured surfaces [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013 (in Chinese).

    Google Scholar 

  13. DROTLEF D M, STEPIEN L, KAPPL M, et al. Insights into the adhesive mechanisms of tree frogs using artificial mimics [J]. Advanced Functional Materials, 2013, 23(9): 1137–1146.

    Article  Google Scholar 

  14. FEDERLE W, BARNES W J P, BAUMGARTNER W, et al. Wet but not slippery: Boundary friction in tree frog adhesive toe pads [J]. Journal of the Royal Society, Interface, 2006, 3(10): 689–697.

    Article  Google Scholar 

  15. LI W, JIANG Y S, PANG Q, et al. Discomfort perception on human skin among different gender during friction contact [J]. Tribology, 2012, 32(3): 227–232 (in Chinese).

    Google Scholar 

  16. OLAUSSON H, WESSBERG J, KAKUDA N. Tactile directional sensibility: Peripheral neural mechanisms in man [J]. Brain Research, 2000, 866(1/2): 178–187.

    Article  Google Scholar 

  17. LIU X, YUE Z, CAI Z, et al. Quantifying touch-feel perception: Tribological aspects [J]. Measurement Science and Technology, 2008, 19(8): 084007.

    Article  Google Scholar 

  18. VAN KUILENBURG J, MASEN M A, VAN DER HEIDE E. A review of fingerpad contact mechanics and friction and how this affects tactile perception [J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2015, 229(3): 243–258.

    Article  Google Scholar 

  19. BERGMANN TIEST W M. Tactual perception of material properties [J]. Vision Research, 2010, 50(24): 2775–2782.

    Article  Google Scholar 

  20. MORLEY J W, GOODWIN A W, DARIAN-SMITH I. Tactile discrimination of gratings [J]. Experimental Brain Research, 1983, 49(2): 291–299.

    Article  Google Scholar 

  21. WU J Z, WELCOME D E, KRAJNAK K, et al. Finite element analysis of the penetrations of shear and normal vibrations into the soft tissues in a fingertip [J]. Medical Engineering & Physics, 2007, 29(6): 718–727.

    Article  Google Scholar 

  22. YAMAGUCHI A, ATKESON C G. Tactile behaviors with the vision-based tactile sensor FingerVision [J]. International Journal of Humanoid Robotics, 2019, 16(3): 1940002.

    Article  Google Scholar 

  23. TOMLINSON S E, CARRÉ M J, LEWIS R, et al. Human finger contact with small, triangular ridged surfaces [J]. Wear, 2011, 271(9/10): 2346–2353.

    Article  Google Scholar 

  24. ADAMS M J, BRISCOE B J, JOHNSON S A. Friction and lubrication of human skin [J]. Tribology Letters, 2007, 26(3): 239–253.

    Article  Google Scholar 

  25. WOLFRAM L J. Friction of skin [J]. Journal of the Society of Cosmetic Chemists, 1983, 34(8): 465–476.

    Google Scholar 

  26. ADAMS M J, BRISCOE B J, WEE T K. The differential friction effect of keratin fibres [J]. Journal of Physics D: Applied Physics, 1990, 23(4): 406–414.

    Article  Google Scholar 

  27. TANG W, CHEN N X, ZHANG J K, et al. Characterization of tactile perception and optimal exploration movement [J]. Tribology Letters, 2015, 58(2): 28.

    Article  Google Scholar 

  28. NACHT S, -A CLOSE J, YEUNG D, et al. Skin friction coefficient: Changes induced by skin hydration and emollient application and correlation with perceived skin feel [J]. Journal of the Society of Cosmetic Chemists, 1981, 32(2): 55–65.

    Google Scholar 

  29. FAGIANI R, MASSI F, CHATELET E, et al. Tactile perception by friction induced vibrations [J]. Tribology International, 2011, 44(10): 1100–1110.

    Article  Google Scholar 

  30. TANG W, ZHANG M M, CHEN G F, et al. Investigation of tactile perception evoked by ridged texture using ERP and non-linear methods [J]. Frontiers in Neuroscience, 2021, 15: 676837.

    Article  Google Scholar 

  31. GRAY H M, AMBADY N, LOWENTHAL W T, et al. P300 as an index of attention to self-relevant stimuli [J]. Journal of Experimental Social Psychology, 2004, 40(2): 216–224.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Tang  (唐玮).

Additional information

Foundation item: the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (No. 48)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhu, Y., Fang, X. et al. Influence of Height of Bionic Hexagonal Texture on Tactile Perception. J. Shanghai Jiaotong Univ. (Sci.) (2023). https://doi.org/10.1007/s12204-023-2648-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12204-023-2648-1

Key words

关键词

CLC number

Document code

Navigation