Skip to main content
Log in

Applications of Artificial Intelligence in Cardiac Electrophysiology and Clinical Diagnosis with Magnetic Resonance Imaging and Computational Modeling Techniques

人工智能结合磁共振成像和计算建模在心脏电生理与临床诊断中的应用

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

The underlying electrophysiological mechanisms and clinical treatments of cardiovascular diseases, which are the most common cause of morbidity and mortality worldwide, have gotten a lot of attention and been widely explored in recent decades. Along the way, techniques such as medical imaging, computing modeling, and artificial intelligence (AI) have always played significant roles in above studies. In this article, we illustrated the applications of AI in cardiac electrophysiological research and disease prediction. We summarized general principles of AI and then focused on the roles of AI in cardiac basic and clinical studies incorporating magnetic resonance imaging and computing modeling techniques. The main challenges and perspectives were also analyzed.

摘要

心血管疾病是导致死亡的最常见的原因之一。一直以来, 其内在的电生理机制和临床治疗方法都广受关注, 而医学成像、计算建模和人工智能是其中非常重要的研究技术。本文概括了人工智能的基本原理, 并重点论述了人工智能结合磁共振成像和计算建模在心脏基础与临床研究中的应用, 并探讨了这些技术目前面临的挑战及发展前景。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GOLDMAN M R, BRADY T J, PYKETT I L, et al. Quantification of experimental myocardial infarction using nuclear magnetic resonance imaging and paramagnetic ion contrast enhancement in excised canine hearts [J]. Circulation, 1982, 66(5): 1012–1016.

    Article  Google Scholar 

  2. WOLFE C L. Assessment of myocardial ischemia and infarction by contrast enhanced magnetic resonance imaging [J]. Cardiology Clinics, 1989, 7(3): 685–696.

    Article  Google Scholar 

  3. FILIPCHUK N G, PESHOCK R M, MALLOY C R, et al. Detection and localization of recent myocardial infarction by magnetic resonance imaging [J]. The American Journal of Cardiology, 1986, 58(3): 214–219.

    Article  Google Scholar 

  4. MACHANAHALLI BALAKRISHNA A, ISMAYL M, THANDRA A, et al. Diagnostic value of cardiac magnetic resonance imaging and intracoronary optical coherence tomography in patients with a working diagnosis of myocardial infarction with non-obstructive coronary arteries - A systematic review and meta-analysis [J]. Current Problems in Cardiology, 2023, 48(6): 101126.

    Article  Google Scholar 

  5. LINTINGRE P F, NIVET H, CLÉMENT-GUINAUDEAU S, et al. High-resolution late gadolinium enhancement magnetic resonance for the diagnosis of myocardial infarction with nonob-structed coronary arteries [J]. JACC: Cardiovascular Imaging, 2020, 13(5): 1135–1148.

    Google Scholar 

  6. TOUPIN S, PEZEL T, BUSTIN A, et al. Whole-heart high-resolution late gadolinium enhancement: Techniques and clinical applications [J]. Journal of Magnetic Resonance Imaging, 2022, 55(4): 967–987.

    Article  Google Scholar 

  7. HAUSVATER A, PASUPATHY S, TORNVALL P, et al. ST-segment elevation and cardiac magnetic resonance imaging findings in myocardial infarction with non-obstructive coronary arteries [J]. International Journal of Cardiology, 2019, 287: 128–131.

    Article  Google Scholar 

  8. RIBEIRO J M, DE JAEGERE P P. Artificial intelligence in cardiovascular medicine - are we ready? [J]. Trends in Cardiovascular Medicine, 2022

  9. RANKA S, REDDY M, NOHERIA A. Artificial intelligence in cardiovascular medicine [J]. Current Opinion in Cardiology, 2020, 36(1): 26–35.

    Article  Google Scholar 

  10. NYGÅRDS M E, HULTING J. An automated system for ECG monitoring [J]. Computers and Biomedical Research, 1979, 12(2): 181–202.

    Article  Google Scholar 

  11. FRANKEL P, ROTHMEIER J, JAMES D, et al. A computerized system for ECG monitoring [J]. Computers and Biomedical Research, 1975, 8(6): 560–567.

    Article  Google Scholar 

  12. YANOWITZ F, KINIAS P, RAWLING D, et al. Accuracy of a continuous real-time ECG dysrhythmia monitoring system [j]. Circulation, 1974, 50(1): 65–72.

    Article  Google Scholar 

  13. PARK J, AN J, KIM J, et al. Study on the use of standard 12-lead ECG data for rhythm-type ECG classification problems [J]. Computer Methods and Programs in Biomedicine, 2022, 214: 106521.

    Article  Google Scholar 

  14. KASHOU A H, KO W Y, ATTIA Z I, et al. A comprehensive artificial intelligence-enabled electrocardiogram interpretation program [J]. Cardiovascular Digital Health Journal, 2020, 1(2): 62–70.

    Article  Google Scholar 

  15. SMITH S W, RAPIN J, LI J, et al. A deep neural network for 12-lead electrocardiogram interpretation outperforms a conventional algorithm, and its physician overread, in the diagnosis of atrial fibrillation [J]. IJC Heart & Vasculature, 2019, 25: 100423.

    Article  Google Scholar 

  16. HANNUN A Y, RAJPURKAR P, HAGHPANAHI M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network [J]. Nature Medicine, 2019, 25(1): 65–69.

    Article  Google Scholar 

  17. RIBEIRO A H, RIBEIRO M H, PAIXÃO G M M, et al. Author Correction: Automatic diagnosis of the 12-lead ECG using a deep neural network [J]. Nature Communications, 2020, 11: 2227.

    Article  Google Scholar 

  18. ATTIA Z I, KAPA S, LOPEZ-JIMENEZ F, et al. Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram [J]. Nature Medicine, 2019, 25(1): 70–74.

    Article  Google Scholar 

  19. ADEDINSEWO D, CARTER R, ATTIA Z I, et al. Application of an artificial intelligence-enabled ECG algorithm to identify patients with left ventricular systolic dysfunction presenting to the emergency room with dyspnea [J]. Journal of the American College of Cardiology, 2020, 75(11): 3598.

    Article  Google Scholar 

  20. LEE H, SHIN S Y, SEO M, et al. Prediction of ventricular tachycardia one hour before occurrence using artificial neural networks [J]. Scientific Reports, 2016, 6: 32390.

    Article  Google Scholar 

  21. DOSTE R, LOZANO M, JIMENEZ-PEREZ G, et al. Training machine learning models with synthetic data improves the prediction of ventricular origin in outflow tract ventricular arrhythmias [J]. Frontiers in Physiology, 2022, 13: 909372.

    Article  Google Scholar 

  22. ATTIA Z I, NOSEWORTHY P A, LOPEZ-JIMENEZ F, et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: A retrospective analysis of outcome prediction [J]. The Lancet, 2019, 394(10201): 861–867.

    Article  Google Scholar 

  23. EBRAHIMZADEH E, KALANTARI M, JOULANI M, et al. Prediction of paroxysmal Atrial Fibrillation: A machine learning based approach using combined feature vector and mixture of expert classification on HRV signal [J]. Computer Methods and Programs in Biomedicine, 2018, 165: 53–67.

    Article  Google Scholar 

  24. JEKOVA I, CHRISTOV I, KRASTEVA V. Atrioventricular synchronization for detection of atrial fibrillation and flutter in one to twelve ECG leads using a dense neural network classifier [J]. Sensors, 2022, 22(16): 6071.

    Article  Google Scholar 

  25. KO W Y, SIONTIS K C, ATTIA Z I, et al. Detection of hypertrophic cardiomyopathy using a convolutional neural network-enabled electrocardiogram [J]. Journal of the American College of Cardiology, 2020, 75(7): 722–733.

    Article  Google Scholar 

  26. TISON G H, ZHANG J, DELLING F N, et al. Automated and interpretable patient ECG profiles for disease detection, tracking, and discovery [J]. Circulation Cardiovascular Quality and Outcomes, 2019, 12(9): e005289.

    Article  Google Scholar 

  27. GALLOWAY C D, VALYS A V, SHREIBATI J B, et al. Development and validation of a deep-learning model to screen for hyperkalemia from the electrocardiogram [J]. JAMA Cardiology, 2019, 4(5): 428.

    Article  Google Scholar 

  28. TOKODI M, SCHWERTNER W R, KOVACS A, et al. Machine learning-based mortality prediction of patients undergoing cardiac resynchronization therapy: the SEMMELWEIS-CRT score [J]. European Heart Journal, 2020, 41(18): 1747–1756.

    Article  Google Scholar 

  29. CIKES M, SANCHEZ-MARTINEZ S, CLAGGETT B, et al. Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy [J]. European Journal of Heart Failure, 2019, 21(1): 74–85.

    Article  Google Scholar 

  30. FEENY A K, RICKARD J, PATEL D, et al. Machine learning prediction of response to cardiac resynchronization therapy: Improvement versus current guidelines [J]. Circulation: Arrhythmia and Electrophysiology, 2019, 12(7): e007316.

    Google Scholar 

  31. LEVY A E, BISWAS M, WEBER R, et al. Applications of machine learning in decision analysis for dose management for dofetilide [J]. PLoS One, 2019, 14(12): e0227324.

    Article  Google Scholar 

  32. ATTIA Z I, SUGRUE A, ASIRVATHAM S J, et al. Noninvasive assessment of dofetilide plasma concentration using a deep learning (neural network) analysis of the surface electrocardiogram: A proof of concept study [J]. PLoS One, 2018, 13(8): e0201059.

    Article  Google Scholar 

  33. SIMJANOSKA M, GJORESKI M, GAMS M, et al. Non-invasive blood pressure estimation from ECG using machine learning techniques [J]. Sensors, 2018, 18(4): 1160.

    Article  Google Scholar 

  34. ATTIA ZACHI I, FRIEDMAN PAUL A, NOSE-WORTHY PETER A, et al. Age and sex estimation using artificial intelligence from standard 12-lead ECGs [J]. Circulation Arrhythmia and Electrophysiology, 2019, 12(9): e007284.

    Article  Google Scholar 

  35. DRAELOS R L, EZEKIAN J E, ZHUANG F, et al. Genesis: Gene-specific machine learning models for variants of uncertain significance found in catecholaminergic polymorphic ventricular Tachycardia and Long QT syndrome-associated genes [J]. Circulation: Arrhythmia and Electrophysiology, 2022, 15(4): e010326.

    Google Scholar 

  36. SUNDARAM L, GAO H, PADIGEPATI S R, et al. Predicting the clinical impact of human mutation with deep neural networks [J]. Nature Genetics, 2018, 50(8): 1161–1170.

    Article  Google Scholar 

  37. GOROSPE G, ZHU R J, MILLROD M A, et al. Automated grouping of action potentials of human embryonic stem cell-derived cardiomyocytes [J]. IEEE Transactions on Biomedical Engineering, 2014, 61(9): 2389–2395.

    Article  Google Scholar 

  38. ZHU R J, MILLROD M A, ZAMBIDIS E T, et al. Variability of action potentials within and among cardiac cell clusters derived from human embryonic stem cells [J]. Scientific Reports, 2016, 6: 18544.

    Article  Google Scholar 

  39. BEDBROOK C N, YANG K K, ROBINSON J E, et al. Machine learning-guided channelrhodopsin engineering enables minimally invasive optogenetics [J]. Nature Methods, 2019, 16(11): 1176–1184.

    Article  Google Scholar 

  40. SAHLI COSTABAL F, MATSUNO K, YAO J, et al. Machine learning in drug development: Characterizing the effect of 30 drugs on the QT interval using Gaussian process regression, sensitivity analysis, and uncertainty quantification [J]. Computer Methods in Applied Mechanics and Engineering, 2019, 348: 313–333.

    Article  MathSciNet  MATH  Google Scholar 

  41. KIM H, NAM H. hERG-Att: Self-attention-based deep neural network for predicting hERG blockers [J]. Computational Biology and Chemistry, 2020, 87: 107286.

    Article  Google Scholar 

  42. SHARIFI M, BUZATU D, HARRIS S, et al. Development of models for predicting Torsade de Pointes cardiac arrhythmias using perceptron neural networks [J]. BMC Bioinformatics, 2017, 18(14): 93–102.

    Google Scholar 

  43. CRUCES P D, TORKAR D, ARINI P D. Dynamic features of cardiac vector as alternative markers of drug-induced spatial dispersion [J]. Journal of Pharmacological and Toxicological Methods, 2020, 104: 106894.

    Article  Google Scholar 

  44. AGHASAFARI P, YANG P C, KERNIK D C, et al. A deep learning algorithm to translate and classify cardiac electrophysiology [J]. eLife, 2021, 10: 68335.

    Article  Google Scholar 

  45. JUHOLA M, PENTTINEN K, JOUTSIJOKI H, et al. Analysis of drug effects on iPSC cardiomyocytes with machine learning [J]. Annals of Biomedical Engineering, 2021, 49(1): 129–138.

    Article  Google Scholar 

  46. LAWSON B A, BURRAGE K, BURRAGE P, et al. Slow recovery of excitability increases ventricular fibrillation risk as identified by emulation [J]. Frontiers in Physiology, 2018, 9: 1114.

    Article  Google Scholar 

  47. MULIMANI M K, ALAGESHAN J K, PANDIT R. Deep-learning-assisted detection and termination of spiral and broken-spiral waves in mathematical models for cardiac tissue [J]. Physical Review Research, 2020, 2(2): 023155.

    Article  Google Scholar 

  48. SAHLI COSTABAL F, YANG Y B, PERDIKARIS P, et al. Physics-informed neural networks for cardiac activation mapping [J]. Frontiers in Physics, 2020, 8: 42.

    Article  Google Scholar 

  49. NEUMANN D, MANSI T. Machine learning methods for robust parameter estimation [M]//Artificial intelligence for computational modeling of the heart. London: Academic Press, 2020: 161–181.

    Chapter  Google Scholar 

  50. DHAMALA J, BAJRACHARYA P, AREVALO H J, et al. Embedding high-dimensional Bayesian optimization via generative modeling: Parameter personalization of cardiac electrophysiological models [J]. Medical Image Analysis, 2020, 62: 101670.

    Article  Google Scholar 

  51. FERRER-ALBERO A, GODOY E J, LOZANO M, et al. Non-invasive localization of atrial ectopic beats by using simulated body surface P-wave integral maps [J]. PLoS One, 2017, 12(7): e0181263.

    Article  Google Scholar 

  52. RONEY C H, BEACH M L, MEHTA A M, et al. In silico comparison of left atrial ablation techniques that target the anatomical, structural, and electrical substrates of atrial fibrillation [J]. Frontiers in Physiology, 2020, 11: 572874.

    Article  Google Scholar 

  53. GIFFARD-ROISIN S, DELINGETTE H, JACKSON T, et al. Transfer learning from simulations on a reference anatomy for ECGI in personalized cardiac resynchronization therapy [J]. IEEE Transactions on Biomedical Engineering, 2019, 66(2): 343–353.

    Article  Google Scholar 

  54. YILMAZ B, MACLEOD R S, PUNSKE B B, et al. Venous catheter based mapping of ectopic epicardial activation: Training data set selection for statistical estimation [J]. IEEE Transactions on Biomedical Engineering, 2005, 52(11): 1823–1831.

    Article  Google Scholar 

  55. PRAKOSA A, SERMESANT M, ALLAIN P, et al. Cardiac electrophysiological activation pattern estimation from images using a patient-specific database of synthetic image sequences [J]. IEEE Transactions on Biomedical Engineering, 2014, 61(2): 235–245.

    Article  Google Scholar 

  56. IRONI L, TENTONI S. Interplay of spatial aggregation and computational geometry in extracting diagnostic features from cardiac activation data [J]. Computer Methods and Programs in Biomedicine, 2012, 107(3): 456–467.

    Article  Google Scholar 

  57. COLLETTI P M. Multicenter, scan-rescan, human and machine learning CMR study to test generalizability and precision in imaging biomarker analysis [J]. Circulation: Cardiovascular Imaging, 2019, 12(10): e009214.

    Google Scholar 

  58. AUGUSTO J B, DAVIES R H, BHUVA A N, et al. Diagnosis and risk stratification in hypertrophic cardiomyopathy using machine learning wall thickness measurement: A comparison with human test-retest performance [J]. The Lancet Digital Health, 2021, 3(1): e20–e28.

    Article  Google Scholar 

  59. FAHMY A S, NEISIUS U, CHAN R H, et al. Three-dimensional deep convolutional neural networks for automated myocardial scar quantification in hypertrophic cardiomyopathy: A multicenter multivendor study [J]. Radiology, 2020, 294(1): 52–60.

    Article  Google Scholar 

  60. RUIJSINK B, PUYOL-ANTÓN E, OKSUZ I, et al. Fully automated, quality-controlled cardiac analysis from CMR [J]. JACC: Cardiovascular Imaging, 2020, 13(3): 684–695.

    Google Scholar 

  61. ANKENBRAND M J, LOHR D, SCHLÖTELBURG W, et al. Deep learning-based cardiac cine segmentation: Transfer learning application to 7T ultrahighfield MRI [J]. Magnetic Resonance in Medicine, 2021, 86(4): 2179–2191.

    Article  Google Scholar 

  62. ZHANG J, GAJJALA S, AGRAWAL P, et al. Fully automated echocardiogram interpretation in clinical practice [J]. Circulation, 2018, 138(16): 1623–1635.

    Article  Google Scholar 

  63. MACGREGOR R M, GUO A X, MASOOD M F, et al. Machine learning outcome prediction in dilated cardiomyopathy using regional left ventricular multi-parametric strain [J]. Annals of Biomedical Engineering, 2021, 49(2): 922–932.

    Article  Google Scholar 

  64. SATRIANO A, AFZAL Y, SARIM AFZAL M, et al. Neural-network-based diagnosis using 3-dimensional myocardial architecture and deformation: Demonstration for the differentiation of hypertrophic cardiomyopathy [J]. Frontiers in Cardiovascular Medicine, 2020, 7: 584727.

    Article  Google Scholar 

  65. GOTO S, SOLANKI D, JOHN J, et al. Multinational federated learning approach to train ECG and echocardiogram models for hypertrophic cardiomyopathy detection [J]. Circulation, 2022, 146: 755–769.

    Article  Google Scholar 

  66. AVARD E, SHIRI I, HAJIANFAR G, et al. Noncontrast Cine Cardiac Magnetic Resonance image radiomics features and machine learning algorithms for myocardial infarction detection [J]. Computers in Biology and Medicine, 2022, 141: 105145.

    Article  Google Scholar 

  67. ZHANG N, YANG G A, GAO Z F, et al. Deep learning for diagnosis of chronic myocardial infarction on nonenhanced cardiac cine MRI [J]. Radiology, 2019, 291(3): 606–617.

    Article  Google Scholar 

  68. MURAKI R, TERAMOTO A, SUGIMOTO K, et al. Automated detection scheme for acute myocardial infarction using convolutional neural network and long short-term memory [J]. PLoS One, 2022, 17(2): e0264002.

    Article  Google Scholar 

  69. HERNÁNDEZ-CASILLAS A, DEL-CANTO I, RUIZ-ESPAÑA S, et al. Detection and classification of myocardial infarction transmurality using cardiac MR image analysis and machine learning algorithms [C]//2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society. Glasgow: IEEE, 2022: 1686–1689.

    Google Scholar 

  70. CORNHILL AIDAN K, STEVEN D, ALESSANDRO S, et al. Machine learning patient-specific prediction of heart failure hospitalization using cardiac MRI-based phenotype and electronic health Information [J]. Frontiers in Cardiovascular Medicine, 2022, 9: 890904.

    Article  Google Scholar 

  71. ZHONG H, WU J Q, ZHAO W Y, et al. A self-supervised learning based framework for automatic heart failure classification on cine cardiac magnetic resonance image [C]//2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society. Mexico: IEEE, 2021: 2887–2890.

    Google Scholar 

  72. KERMANI S, GHELICH OGHLI M, MOHAM-MADZADEH A, et al. NF-RCNN: Heart localization and right ventricle wall motion abnormality detection in cardiac MRI [J]. Physica Medica, 2020, 70: 65–74.

    Article  Google Scholar 

  73. AFSHIN M, BEN AYED I, PUNITHAKUMAR K, et al. Regional assessment of cardiac left ventricular myocardial function via MRI statistical features [J]. IEEE Transactions on Medical Imaging, 2014, 33(2): 481–494.

    Article  Google Scholar 

  74. LIN X, YANG F, CHEN Y, et al. Echocardiography-based AI detection of regional wall motion abnormalities and quantification of cardiac function in myocardial infarction [J]. Frontiers in Cardiovascular Medicine, 2022, 9: 903660.

    Article  Google Scholar 

  75. HUANG M S, WANG C S, CHIANG J, et al. Automated recognition of regional wall motion abnormalities through deep neural network interpretation of transthoracic echocardiography [J]. Circulation, 2020, 142: 1510–1520.

    Article  Google Scholar 

  76. PAPANDRIANOS N I, FELEKI A, PAPAGEORGIOU E I, et al. Deep learning-based automated diagnosis for coronary artery disease using SPECT-MPI images [J]. Journal of Clinical Medicine, 2022, 11(13): 3918.

    Article  Google Scholar 

  77. ZHANG L, WAHLE A, CHEN Z, et al. Predicting locations of high-risk plaques in coronary arteries in patients receiving statin therapy [J]. IEEE Transactions on Medical Imaging, 2018, 37(1): 151–161.

    Article  Google Scholar 

  78. OTAKI Y, SINGH A, KAVANAGH P, et al. Clinical deployment of explainable artificial intelligence of SPECT for diagnosis of coronary artery disease [J]. JACC: Cardiovascular Imaging, 2022, 15(6): 1091–1102.

    Google Scholar 

  79. BETANCUR J, HU L H, COMMANDEUR F, et al. Deep learning analysis of upright-supine high-efficiency SPECT myocardial perfusion imaging for prediction of obstructive coronary artery disease: A multicenter study [J]. Journal of Nuclear Medicine, 2019, 60(5): 664–670.

    Article  Google Scholar 

  80. JUAREZ-OROZCO L E, KNOL R J J, SANCHEZ-CATASUS C A, et al. Machine learning in the integration of simple variables for identifying patients with myocardial ischemia [J]. Journal of Nuclear Cardiology, 2020, 27(1): 147–155.

    Article  Google Scholar 

  81. COENEN A, KIM Y H, KRUK M, et al. Diagnostic accuracy of a machine-learning approach to coronary computed tomographic angiography-based fractional flow reserve: Result from the MACHINE consortium [J]. Circulation: Cardiovascular Imaging, 2018, 11(6): e007217.

    Google Scholar 

  82. CHUN S H, SUH Y J, HAN K, et al. Deep learning-based reconstruction on cardiac CT yields distinct radiomic features compared to iterative and filtered back projection reconstructions [J]. Scientific Reports, 2022, 12: 15171.

    Article  Google Scholar 

  83. CHEN Y T, XIE W, ZHANG J W, et al. Myocardial segmentation of cardiac MRI sequences with temporal consistency for coronary artery disease diagnosis [J]. Frontiers in Cardiovascular Medicine, 2022, 9: 804442.

    Article  Google Scholar 

  84. BAJAJ R, EGGERMONT J, GRAINGER S J, et al. Machine learning for atherosclerotic tissue component classification in combined near-infrared spectroscopy intravascular ultrasound imaging: Validation against histology [J]. Atherosclerosis, 2022, 345: 15–25.

    Article  Google Scholar 

  85. JIN X, LI Y Z, YAN F, et al. Automatic coronary plaque detection, classification, and stenosis grading using deep learning and radiomics on computed tomography angiography images: A multi-center multi-vendor study [J]. European Radiology, 2022, 32(8): 5276–5286.

    Article  Google Scholar 

  86. SUINESIAPUTRA A, MAUGER C A, AMBALEVENKATESH B, et al. Deep learning analysis of cardiac MRI in legacy datasets: Multi-ethnic study of atherosclerosis [J]. Frontiers in Cardiovascular Medicine, 2022, 8: 807728.

    Article  Google Scholar 

  87. WOJNARSKI C M, ROSELLI E E, IDREES J J, et al. Machine-learning phenotypic classification of bicuspid aortopathy [J]. The Journal of Thoracic and Cardiovascular Surgery, 2018, 155(2): 461–469.e4.

    Article  Google Scholar 

  88. NIZAR M, CHAN C, KHALIL A, et al. Real-time detection of aortic valve in echocardiography using convolutional neural networks [J]. Current Medical Imaging Reviews, 2020, 16(5): 584–591.

    Article  Google Scholar 

  89. Chinese Society of Pacing and Electrophysiology, Chinese Society of Arrhythmias, Atrial Fibrillation Center Union of China. Current knowledge and management of atrial fibrillation: Consensus of Chinese experts 2021 [J]. Chinese Journal of Cardiac Arrhythmias, 2022, 26(1): 15–88 (in Chinese).

    Google Scholar 

  90. HUANG C X. Atrial fibrillation, what exactly do we know? [J]. Chinese Journal of Cardiac Arrhythmias, 2020, 24(1): 5–9 (in Chinese).

    MathSciNet  Google Scholar 

  91. ZAHID S, COCHET H, BOYLE P M, et al. Patient-derived models link re-entrant driver localization in atrial fibrillation to fibrosis spatial pattern [J]. Cardiovascular Research, 2016, 110(3): 443–454.

    Article  Google Scholar 

  92. ROY A, VARELA M, ASLANIDI O. Image-based computational evaluation of the effects of atrial wall thickness and fibrosis on re-entrant drivers for atrial fibrillation [J]. Frontiers in Physiology, 2018, 9: 1352.

    Article  Google Scholar 

  93. SHI L Z, HENG R, LIU S M, et al. Effect of catheter ablation versus antiarrhythmic drugs on atrial fibrillation: A meta-analysis of randomized controlled trials [J]. Experimental and Therapeutic Medicine, 2015, 10(2): 816–822.

    Article  Google Scholar 

  94. NEDIOS S, LINDEMANN F, HEIJMAN J, et al. Atrial remodeling and atrial fibrillation recurrence after catheter ablation [J]. Herz, 2021, 46(4): 312–317.

    Article  Google Scholar 

  95. MARROUCHE N F, WILBER D, HINDRICKS G, et al. Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation [J]. JAMA, 2014, 311(5): 498.

    Article  Google Scholar 

  96. HUANG W, ZHANG J. The ablation procedures and assessment of persistent atrial fibrillation [J]. Chinese Journal of Cardiac Pacing and Electrophysiology, 2021, 35(5): 477–479 (in Chinese).

    Google Scholar 

  97. VARELA M, BISBAL F, ZACUR E, et al. Novel computational analysis of left atrial anatomy improves prediction of atrial fibrillation recurrence after ablation [J]. Frontiers in Physiology, 2017, 8: 68.

    Article  Google Scholar 

  98. BHALODIA R, GOPARAJU A, SODERGREN T, et al. Deep learning for end-to-end atrial fibrillation recurrence estimation [C]//2018 Computing in Cardiology Conference. Maastricht: IEEE, 2018: 1–4.

    Google Scholar 

  99. BOYLE P M, ZGHAIB T, ZAHID S, et al. Computationally guided personalized targeted ablation of persistent atrial fibrillation [J]. Nature Biomedical Engineering, 2019, 3(11): 870–879.

    Article  Google Scholar 

  100. SHADE J K, ALI R L, BASILE D, et al. Preprocedure application of machine learning and mechanistic simulations predicts likelihood of paroxysmal atrial fibrillation recurrence following pulmonary vein isolation [J]. Circulation Arrhythmia and Electrophysiology, 2020, 13(7): e008213.

    Article  Google Scholar 

  101. Chinese Society of Pacing and Electrophysiology, Chinese Society of Arrhythmias. 2020 Chinese Society of Pacing and Electrophysiology (CSPE)/Chinese Society of Arrhythmias (CSA) expert consensus statement on ventricular arrhythmias (2016 update) [J]. Chinese Journal of Cardiac Arrhythmias, 2020, 24(3): 188–258 (in Chinese).

    Google Scholar 

  102. Chinese Society of Pacing and Electrophysiology, Chinese Society of Arrhythmias. The interpretation of 2020 Chinese Society of Pacing and Electrophysiology (CSPE)/Chinese Society of Arrhythmias (CSA) expert consensus statement on ventricular arrhythmias [J]. Chinese Journal of Cardiac Arrhythmias, 2020, 24(4): 348–350 (in Chinese).

    Google Scholar 

  103. LIN G, NISHIMURA R A, GERSH B J, et al. Device complications and inappropriate implantable cardioverter defibrillator shocks in patients with hypertrophic cardiomyopathy [J]. Heart, 2009, 95(9): 709–714.

    Article  Google Scholar 

  104. KRAMER C M, BILCHICK K C. Defibrillator or No defibrillator with CRT [J]. Journal of the American College of Cardiology, 2022, 79(7): 679–681.

    Article  Google Scholar 

  105. ALIS D, GULER A, YERGIN M, et al. Assessment of ventricular tachyarrhythmia in patients with hypertrophic cardiomyopathy with machine learning-based texture analysis of late gadolinium enhancement cardiac MRI [J]. Diagnostic and Interventional Imaging, 2020, 101(3): 137–146.

    Article  Google Scholar 

  106. OKADA DAVID R, JASON M, JONATHAN C, et al. Substrate spatial complexity analysis for the prediction of ventricular arrhythmias in patients with ischemic cardiomyopathy [J]. Circulation Arrhythmia and Electrophysiology, 2020, 13(4): e007975.

    Article  Google Scholar 

  107. MERLO M, CANNATÀ A, GOBBO M, et al. Evolving concepts in dilated cardiomyopathy [J]. European Journal of Heart Failure, 2018, 20(2): 228–239.

    Article  Google Scholar 

  108. JEFFERIES J L, TOWBIN J A. Dilated cardiomyopathy [J]. The Lancet, 2010, 375(9716): 752–762.

    Article  Google Scholar 

  109. HU R, LI R, YANG P C, et al. Advances in the clinical application of cardiac magnetic resonance in the diagnosis of left ventricular hypertrophy [J]. Chinese Journal of Magnetic Resonance Imaging, 2022, 13(5): 151–153 (in Chinese).

    Google Scholar 

  110. LI S, FENG C, YU K, et al. Critical review of human cardiac magnetic resonance image super resolution reconstruction based on deep learning method [J]. Journal of Image and Graphics, 2022, 27(3): 704–721 (in Chinese).

    Google Scholar 

  111. HEIJMAN J, SUTANTO H, CRIJNS H J G M, et al. Computational models of atrial fibrillation: Achievements, challenges, and perspectives for improving clinical care [J]. Cardiovascular Research, 2021, 117(7): 1682–1699.

    Article  Google Scholar 

  112. YI P, WANG K, HUANG C, et al. Adversarial attacks in artificial intelligence: A survey [J]. Journal of Shanghai Jiao Tong University, 2018, 52(10): 1298–1306 (in Chinese).

    Google Scholar 

  113. ZIHNI E, MADAI V I, LIVNE M, et al. Opening the black box of artificial intelligence for clinical decision support: A study predicting stroke outcome [J]. PLoS One, 2020, 15(4): e0231166.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqun Li  (李治群).

Additional information

Foundation item: the Hainan Provincial Natural Science Foundation of China (No. 820RC625), and the National Natural Science Foundation of China (No. 82060332)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, H., Han, G., Wei, C. et al. Applications of Artificial Intelligence in Cardiac Electrophysiology and Clinical Diagnosis with Magnetic Resonance Imaging and Computational Modeling Techniques. J. Shanghai Jiaotong Univ. (Sci.) (2023). https://doi.org/10.1007/s12204-023-2628-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12204-023-2628-5

Key words

关键词

CLC number

Document code

Navigation