Skip to main content
Log in

Transfer Learning in Motor Imagery Brain Computer Interface: A Review

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

Transfer learning, as a new machine learning methodology, may solve problems in related but different domains by using existing knowledge, and it is often applied to transfer training data from another domain for model training in the case of insufficient training data. In recent years, an increasing number of researchers who engage in brain-computer interface (BCI), have focused on using transfer learning to make most of the available electroencephalogram data from different subjects, effectively reducing the cost of expensive data acquisition and labeling as well as greatly improving the learning performance of the model. This paper surveys the development of transfer learning and reviews the transfer learning approaches in BCI. In addition, according to the “what to transfer” question in transfer learning, this review is organized into three contexts: instance-based transfer learning, parameter-based transfer learning, and feature-based transfer learning. Furthermore, the current transfer learning applications in BCI research are summarized in terms of the transfer learning methods, datasets, evaluation performance, etc. At the end of the paper, the questions to be solved in future research are put forward, laying the foundation for the popularization and in-depth research of transfer learning in BCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ZHUANG F Z, LUO P, HE Q, et al. Survey on transfer learning research [J]. Journal of Software, 2015, 26(1): 26–39 (in Chinese).

    MathSciNet  Google Scholar 

  2. NICOLAS-ALONSO L F, GOMEZ-GIL J. Brain computer interfaces, a review [J]. Sensors, 2012, 12(2): 1211–1279.

    Article  Google Scholar 

  3. LOTTE F, BOUGRAIN L, CICHOCKI A, et al. A review of classification algorithms for EEG-based brain-computer interfaces: A 10 year update [J]. Journal of Neural Engineering, 2018, 15(3): 031005.

    Article  Google Scholar 

  4. PAN S J, YANG Q. A survey on transfer learning [J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345–1359.

    Article  Google Scholar 

  5. WEISS K, KHOSHGOFTAAR T M, WANG D D. A survey of transfer learning [J]. Journal of Big Data, 2016, 3: 9.

    Article  Google Scholar 

  6. DAY O, KHOSHGOFTAAR T M. A survey on heterogeneous transfer learning [J]. Journal of Big Data, 2017, 4: 29.

    Article  Google Scholar 

  7. ARGYRIOU A, MAURER A, PONTIL M. An algorithm for transfer learning in a heterogeneous environment [M]//Machine learning and knowledge discovery in databases. Berlin, Heidelberg: Springer, 2008: 71–85.

    Chapter  Google Scholar 

  8. YIN J, YANG Q, NI L. Adaptive temporal radio maps for indoor location estimation [C]//Third IEEE International Conference on Pervasive Computing and Communications. Kauai, HI: IEEE, 2005: 85–94.

    Chapter  Google Scholar 

  9. ZHANG L N, ZUO X, LIU J W. Research and development on zero-shot learning [J]. Acta Automatica Sinica, 2020, 46(1): 1–23 (in Chinese).

    Google Scholar 

  10. TAYLOR M E, STONE P. An introduction to intertask transfer for reinforcement learning [J]. AI Magazine, 2011, 32(1): 15.

    Article  Google Scholar 

  11. TAYLOR M E, STONE P. Transfer learning for reinforcement learning domains: A survey [J]. Journal of Machine Learning Research, 2009, 10(10): 1633–1685.

    MathSciNet  Google Scholar 

  12. SU L J, YAO M, ZHENG N G, et al. Correlation between extreme learning machine and entorhinal hippocampal system [C]//Proceedings of ELM-2015 Volume 2. Cham: Springer, 2016: 307–315.

    Chapter  Google Scholar 

  13. WU Z H, ZHENG N G, ZHANG S W, et al. Maze learning by a hybrid brain-computer system [J]. Scientific Reports, 2016, 6: 31746.

    Article  Google Scholar 

  14. KONG X Y, GONG S, SU L J, et al. Neuroprotective effects of allicin on ischemia-reperfusion brain injury [J]. Oncotarget, 2017, 8(61): 104492–104507.

    Article  Google Scholar 

  15. TAN C Q, SUN F C, KONG T, et al. Attention-based transfer learning for brain-computer interface [C]//2019 IEEE International Conference on Acoustics, Speech and Signal Processing. Brighton: IEEE, 2019: 1154–1158.

    Google Scholar 

  16. PAVONE K J, SU L J, GAO L, et al. Lack of responsiveness during the onset and offset of sevoflurane anesthesia is associated with decreased awake-alpha oscillation power [J]. Frontiers in Systems Neuroscience, 2017, 11: 38.

    Article  Google Scholar 

  17. JAYARAM V, ALAMGIR M, ALTUN Y, et al. Transfer learning in brain-computer interfaces [J]. IEEE Computational Intelligence Magazine, 2016, 11(1): 20–31.

    Article  Google Scholar 

  18. GU X T, CAO Z H, JOLFAEI A, et al. EEG-based brain-computer interfaces (BCIs): A survey of recent studies on signal sensing technologies and computational intelligence approaches and their applications [J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18(5): 1645–1666.

    Article  Google Scholar 

  19. HOSSAIN I, KHOSRAVI A, HETTIARACHCHI I, et al. Multiclass informative instance transfer learning framework for motor imagery-based brain-computer interface [J]. Computational Intelligence and Neuroscience, 2018, 2018: 6323414.

    Article  Google Scholar 

  20. WU H, NIU Y, LI F, et al. A parallel multiscale filter bank convolutional neural networks for motor imagery EEG classification [J]. Frontiers in Neuroscience, 2019, 13: 1275.

    Article  Google Scholar 

  21. AZAB A M, MIHAYLOVA L, ANG K K, et al. Weighted transfer learning for improving motor imagery-based brain-computer interface [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(7): 1352–1359.

    Article  Google Scholar 

  22. ARVANEH M, GUAN C T, ANG K K, et al. EEG data space adaptation to reduce intersession nonstationarity in brain-computer interface [J]. Neural Computation, 2013, 25(8): 2146–2171.

    Article  MathSciNet  Google Scholar 

  23. RODRIGUES P L C, CONGEDO M, JUTTEN C. Dimensionality transcending: A method for merging BCI datasets with different dimensionalities [J]. IEEE Transactions on Biomedical Engineering, 2021, 68(2): 673–684.

    Article  Google Scholar 

  24. ZHENG M M, YANG B H, XIE Y L. EEG classification across Sessions and across subjects through transfer learning in motor imagery-based brain-machine interface system [J]. Medical & Biological Engineering & Computing, 2020, 58(7): 1515–1528.

    Article  Google Scholar 

  25. HUANG Z H, ZHENG W M, WU Y J, et al. Ensemble or pool: A comprehensive study on transfer learning for c-VEP BCI during interpersonal interaction [J]. Journal of Neuroscience Methods, 2020, 343: 108855.

    Article  Google Scholar 

  26. SAHA S, BAUMERT M. Intra- and inter-subject variability in EEG-based sensorimotor brain computer interface: A review [J]. Frontiers in Computational Neuroscience, 2020, 13: 87.

    Article  Google Scholar 

  27. XU L C, XU M P, KE Y F, et al. Cross-dataset variability problem in EEG decoding with deep learning [J]. Frontiers in Human Neuroscience, 2020, 14: 103.

    Article  Google Scholar 

  28. ROY S, CHOWDHURY A, MCCREADIE K, et al. Deep learning based inter-subject continuous decoding of motor imagery for practical brain-computer interfaces [J]. Frontiers in Neuroscience, 2020, 14: 918.

    Article  Google Scholar 

  29. ZHANG K, XU G H, CHEN L, et al. Instance transfer subject-dependent strategy for motor imagery signal classification using deep convolutional neural networks [J]. Computational and Mathematical Methods in Medicine, 2020, 2020: 1683013.

    Article  Google Scholar 

  30. PARVAN M, GHIASI A R, REZAII T Y, et al. Transfer Learning based Motor Imagery Classification using Convolutional Neural Networks [C]//2019 27th Iranian Conference on Electrical Engineering (ICEE). Yazd: IEEE, 2019: 1825–1828.

    Chapter  Google Scholar 

  31. KSHIRSAGAR G B, LONDHE N D. Weighted ensemble of deep convolution neural networks for single-trial character detection in Devanagari-script-based P300 speller [J]. IEEE Transactions on Cognitive and Developmental Systems, 2020, 12(3): 551–560.

    Article  Google Scholar 

  32. KOSTAS D, RUDZICZ F. Thinker invariance: Enabling deep neural networks for BCI across more people [J]. Journal of Neural Engineering, 2020, 17(5): 056008.

    Article  Google Scholar 

  33. KANT P, LASKAR S H, HAZARIKA J, et al. CWT based transfer learning for motor imagery classification for brain computer interfaces [J]. Journal of Neuroscience Methods, 2020, 345: 108886.

    Article  Google Scholar 

  34. WANG Y, ZHANG M, WU R M, et al. Silent Speech Decoding Using Spectrogram Features Based on Neuromuscular Activities [J]. Brain Sciences, 2020, 10(7): 442.

    Article  Google Scholar 

  35. THRUN S, PRATT L. Learning to learn: Introduction and overview [M]//Learning to learn. Boston: Springer, 1998: 3–17.

    Chapter  Google Scholar 

  36. LI Y, KAMBARA H, KOIKE Y, et al. Application of covariate shift adaptation techniques in brain-computer interfaces [J]. IEEE Transactions on Biomedical Engineering, 2010, 57(6): 1318–1324.

    Article  Google Scholar 

  37. LI Y, KOIKE Y, SUGIYAMA M. A framework of adaptive brain computer interfaces [C]//2009 2nd International Conference on Biomedical Engineering and Informatics. Tianjin: IEEE, 2009: 1–5.

    Google Scholar 

  38. WU D R, LANCE B J, PARSONS T D. Collaborative filtering for brain-computer interaction using transfer learning and active class selection [J]. PLoS ONE, 2013, 8(2): e56624.

    Article  Google Scholar 

  39. HOSSAIN I, KHOSRAVI A, NAHAVANDHI S. Active transfer learning and selective instance transfer with active learning for motor imagery based BCI [C]//2016 International Joint Conference on Neural Networks. Vancouver, BC: IEEE, 2016: 4048–4055.

    Chapter  Google Scholar 

  40. HOSSAIN I, KHOSRAVI A, HETTIARACHCHI I T, et al. Informative instance transfer learning with subject specific frequency responses for motor imagery brain computer interface [C]//2017 IEEE International Conference on Systems, Man, and Cybernetics. Banff, AB: IEEE, 2017: 252–257.

    Chapter  Google Scholar 

  41. WU D R. Active semi-supervised transfer learning (ASTL) for offline BCI calibration [C]//2017 IEEE International Conference on Systems, Man, and Cybernetics. Banff, AB: IEEE, 2017: 246–251.

    Chapter  Google Scholar 

  42. VERHOEVEN T, VUYLSTEKER B, DAMBRE J. Model selection for subject-to-subject transfer learning in brain-computer interfaces [EB/OL]. [2021-03-29]. https://www.researchgate.net/publication/318788804_Model_Selection_for_Subject-to-Subject_Transfer_Learning_in_Brain-Computer_Interfaces.

  43. WEI C S, LIN Y P, WANG Y T, et al. Transfer learning with large-scale data in brain-computer interfaces [C]//2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Orlando, FL: IEEE, 2016: 4666–4669.

    Google Scholar 

  44. FAUZI H, SHAPIAI M I, KHAIRUDDIN U. Transfer learning of BCI using CUR algorithm [J]. Journal of Signal Processing Systems, 2020, 92(1): 109–121.

    Article  Google Scholar 

  45. ADAIR J, BROWNLEE A, DAOLIO F, et al. Evolving training sets for improved transfer learning in brain computer interfaces [M]//Machine learning, optimization, and big data. Cham: Springer, 2018: 186–197.

    Chapter  Google Scholar 

  46. DAGOIS E, KHALAF A, SEJDIC E, et al. Transfer learning for a multimodal hybrid EEG-fTCD brain-computer interface [J]. IEEE Sensors Letters, 2019, 3(1): 7100704.

    Article  Google Scholar 

  47. KHALAF A, AKCAKAYA M. A probabilistic approach for calibration time reduction in hybrid EEG-fTCD brain-computer interfaces [J]. Biomedical Engineering Online, 2020, 19(1): 23.

    Article  Google Scholar 

  48. SYBELDON M, SCHMIT L, AKCAKAYA M. Transfer learning for SSVEP electroencephalography based brain-computer interfaces using Learn++.NSE and mutual information [J]. Entropy, 2017, 19(1): 41.

    Article  Google Scholar 

  49. NAKANISHI M, WANG Y T, WEI C S, et al. Facilitating calibration in high-speed BCI spellers via leveraging cross-device shared latent responses [J]. IEEE Transactions on Biomedical Engineering, 2020, 67(4): 1105–1113.

    Article  Google Scholar 

  50. BAMDADIAN A, GUAN C T, ANG K K, et al. Improving session-to-session transfer performance of motor imagery-based BCI using Adaptive Extreme Learning Machine [C]//2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Osaka: IEEE, 2013: 2188–2191.

    Google Scholar 

  51. VIDAURRE C, KAWANABE M, VON BÜNAU P, et al. Toward unsupervised adaptation of LDA for brain-computer interfaces [J]. IEEE Transactions on Biomedical Engineering, 2011, 58(3): 587–597.

    Article  Google Scholar 

  52. SPÜLER M, ROSENSTIEL W, BOGDAN M. Adaptive SVM-based classification increases performance of a MEG-based brain-computer interface (BCI) [M]//Artificial neural networks and machine learning — ICANN 2012. Berlin, Heidelberg: Springer, 2012: 669–676.

    Chapter  Google Scholar 

  53. BRUZZONE L, MARCONCINI M. Domain adaptation problems: A DASVM classification technique and a circular validation strategy [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(5): 770–787.

    Article  Google Scholar 

  54. TU W T, SUN S L. A subject transfer framework for EEG classification [J]. Neurocomputing, 2012, 82: 109–116.

    Article  Google Scholar 

  55. DALHOUMI S, DRAY G, MONTMAIN J, et al. An adaptive accuracy-weighted ensemble for inter-subjects classification in brain-computer interfacing [C]//7th International IEEE EMBS Neural Engineering Conference. Montpellier: IEEE, 2015: 126–129.

    Google Scholar 

  56. SALAMI A, KHODABAKHSHI M B, MORADI M H. Fuzzy transfer learning approach for analysing imagery BCI tasks [C]//2017 Artificial Intelligence and Signal Processing Conference. Shiraz: IEEE, 2017: 300–305.

    Google Scholar 

  57. XU G W, SHEN X A, CHEN S R, et al. A deep transfer convolutional neural network framework for EEG signal classification [J]. IEEE Access, 2019, 7: 112767–112776.

    Article  Google Scholar 

  58. HAJINOROOZI M, MAO Z J, LIN Y P, et al. Deep transfer learning for cross-subject and cross-experiment prediction of image rapid serial visual presentation events from EEG data [M]//Augmented cognition neurocognition and machine learning. Cham: Springer, 2017: 45–55.

    Chapter  Google Scholar 

  59. ZHAO D Y, TANG F Z, SI B L, et al. Learning joint space-time-frequency features for EEG decoding on small labeled data [J]. Neural Networks, 2019, 114: 67–77.

    Article  Google Scholar 

  60. FARAHAT A, REICHERT C, SWEENEY-REED C M, et al. Convolutional neural networks for decoding of covert attention focus and saliency maps for EEG feature visualization [J]. Journal of Neural Engineering, 2019, 16(6): 066010.

    Article  Google Scholar 

  61. FAHIMI F, ZHANG Z, GOH W B, et al. Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI [J]. Journal of Neural Engineering, 2019, 16(2): 026007.

    Article  Google Scholar 

  62. ÖZDENIZCI O, WANG Y, KOIKE-AKINO T, et al. Transfer learning in brain-computer interfaces with adversarial variational autoencoders [C]//2019 9th International IEEE/EMBS Conference on Neural Engineering. San Francisco, CA: IEEE, 2019: 207–210.

    Chapter  Google Scholar 

  63. TU W T, SUN S L. Transferable discriminative dimensionality reduction [C]//2011 IEEE 23rd International Conference on Tools with Artificial Intelligence. Boca Raton, FL: IEEE, 2011: 865–868.

    Chapter  Google Scholar 

  64. LEE H, CHOI S. Group nonnegative matrix factorization for EEG classification [C]//12th International Conference on Artificial Intelligence and Statistics. Clearwater Beach, FL: PMLR, 2009: 320–327.

    Google Scholar 

  65. SPÜLER M, ROSENSTIEL W, BOGDAN M. Principal component based covariate shift adaption to reduce non-stationarity in a MEG-based brain-computer interface [J]. EURASIP Journal on Advances in Signal Processing, 2012, 2012: 129.

    Article  Google Scholar 

  66. WANG P T, LU J, LU C, et al. An algorithm for movement related potentials feature extraction based on transfer learning [C]//2015 5th International Conference on Information Science and Technology. Changsha: IEEE, 2015: 309–314.

    Google Scholar 

  67. WAYTOWICH N R, LAWHERN V J, BOHANNON A W, et al. Spectral transfer learning using information geometry for a user-independent brain-computer interface [J]. Frontiers in Neuroscience, 2016, 10: 430.

    Article  Google Scholar 

  68. SAMEK W, MEINECKE F C, MULLER K R. Transferring subspaces between subjects in brain: Computer interfacing [J]. IEEE Transactions on Biomedical Engineering, 2013, 60(8): 2289–2298.

    Article  Google Scholar 

  69. KANG H, NAM Y, CHOI S. Composite common spatial pattern for subject-to-subject transfer [J]. IEEE Signal Processing Letters, 2009, 16(8): 683–686.

    Article  Google Scholar 

  70. LU H P, ENG H L, GUAN C T, et al. Regularized common spatial pattern with aggregation for EEG classification in small-sample setting [J]. IEEE Transactions on Biomedical Engineering, 2010, 57(12): 2936–2946.

    Article  Google Scholar 

  71. DEVLAMINCK D, WYNS B, GROSSE-WENTRUP M, et al. Multisubject learning for common spatial patterns in motor-imagery BCI [J]. Computational Intelligence and Neuroscience, 2011, 2011: 217987.

    Article  Google Scholar 

  72. ZHU X Y, LI P Y, LI C B, et al. Separated channel convolutional neural network to realize the training free motor imagery BCI systems [J]. Biomedical Signal Processing and Control, 2019, 49: 396–403.

    Article  Google Scholar 

  73. DAI M X, ZHENG D Z, LIU S C, et al. Transfer kernel common spatial patterns for motor imagery brain-computer interface classification [J]. Computational and Mathematical Methods in Medicine, 2018, 2018: 9871603.

    Article  Google Scholar 

  74. LONG M S, WANG J M, SUN J G, et al. Domain invariant transfer kernel learning [J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(6): 1519–1532.

    Article  Google Scholar 

  75. ZANINI P, CONGEDO M, JUTTEN C, et al. Transfer learning: A Riemannian geometry framework with applications to brain-computer interfaces [J]. IEEE Transactions on Biomedical Engineering, 2018, 65(5): 1107–1116.

    Article  Google Scholar 

  76. JU C, GAO D S, MANE R, et al. Federated transfer learning for EEG signal classification [C]//2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society. Montreal, QC: IEEE, 2020: 3040–30

    Google Scholar 

  77. RODRIGUES P L C, JUTTEN C, CONGEDO M. Riemannian Procrustes analysis: Transfer learning for brain-computer interfaces [J]. IEEE Transactions on Biomedical Engineering, 2019, 66(8): 2390–2401.

    Article  Google Scholar 

  78. GAUR P, MCCREADIE K, PACHORI R B, et al. Tangent space features-based transfer learning classification model for two-class motor imagery brain-computer interface [J]. International Journal of Neural Systems, 2019, 29(10): 1950025.

    Article  Google Scholar 

  79. ZHANG W, WU D R. Manifold embedded knowledge transfer for brain-computer interfaces [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(5): 1117–1127.

    Article  Google Scholar 

  80. MITROVIC N, ASIF M T, RASHEED U, et al. CUR decomposition for compression and compressed sensing of large-scale traffic data [C]//16th International IEEE Conference on Intelligent Transportation Systems. The Hague: IEEE, 2013: 1475–1480.

    Google Scholar 

  81. WANG P T, LU J, ZHANG B, et al. A review on transfer learning for brain-computer interface classification [C]//2015 5th International Conference on Information Science and Technology. Changsha: IEEE, 2015: 315–322.

    Google Scholar 

  82. LI G, LEE C H, JUNG J J, et al. Deep learning for EEG data analytics: A survey [J]. Concurrency and Computation: Practice and Experience, 2020, 32(18): e5199.

    Article  Google Scholar 

  83. YOSINSKI J, CLUNE J, BENGIO Y, et al. How transferable are features in deep neural networks? [M]//Advances in neural information processing systems 27 (NIPS 2014). Red Hook: Curran Associates, 2014: 1–9.

    Google Scholar 

  84. VÖLKER M, SCHIRRMEISTER R T, FIEDERER L D J, et al. Deep transfer learning for error decoding from non-invasive EEG [C]//2018 6th International Conference on Brain-Computer Interface. Gangwon: IEEE, 2018: 1–6.

    Google Scholar 

  85. LI F, XIA Y, WANG F, et al. Transfer learning algorithm of P300-EEG signal based on XDAWN spatial filter and Riemannian geometry classifier [J]. Applied Sciences, 2020, 10(5): 1804.

    Article  Google Scholar 

  86. LEEB R, BRUNNER C, MULLER-PUTZ G R, et al. BCI Competition 2008: Graz data set B [EB/OL]. [2021-03-29]. https://lampx.tugraz.at/~bci/database/004-2014/description.pdf.

  87. BRUNNER C, LEEB R, MULLER-PUTZ G R, et al. BCl Competition 2008: Graz data set A [EB/OL]. [2021-03-29]. https://www.bbci.de/competition/iv/desc_2a.pdf.

  88. BLANKERTZ B, DORNHEGE G, KRAULEDAT M, et al. The non-invasive Berlin Brain-Computer Interface: Fast acquisition of effective performance in untrained subjects [J]. NeuroImage, 2007, 37(2): 539–550.

    Article  Google Scholar 

  89. DORNHEGE G, BLANKERTZ B, CURIO G, et al. Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms [J]. IEEE Transactions on Biomedical Engineering, 2004, 51(6): 993–1002.

    Article  Google Scholar 

  90. LEMM S, SCHAFER C, CURIO G. BCI competition 2003-data set III: Probabilistic modeling of sensori-motor/spl mu/rhythms for classification of imaginary hand movements [J]. IEEE Transactions on Biomedical Engineering, 2004, 51(6): 1077–1080.

    Article  Google Scholar 

  91. LAL T N, HINTERBERGER T, WIDMAN G, et al. Methods towards invasive human brain computer interfaces [M]//Advances in neural information processing systems 17 (NIPS 2004). Red Hook: Curran Associates, 2004: 1–8.

    Google Scholar 

  92. BLANKERTZ B, CURIO G, MULLER K R. Classifying single trial EEG: Towards brain computer interfacing [M]//Advances in neural information processing systems 14 (NIPS 2001). Red Hook: Curran Associates, 2001: 1–8.

    Google Scholar 

  93. ARVANEH M, GUAN C T, ANG K K, et al. Facilitating motor imagery-based brain-computer interface for stroke patients using passive movement [J]. Neural Computing & Applications, 2017, 28(11): 3259–3272.

    Article  Google Scholar 

  94. SCHALK G, MCFARLAND D J, HINTERBERGER T, et al. BCI2000: a general-purpose brain-computer interface (BCI) system [J]. IEEE Transactions on Biomedical Engineering, 2004, 51(6): 1034–1043.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingai Li  (李明爱).

Additional information

Foundation item: the National Natural Science Foundation of China (Nos. 11832003 and 81471770), and the Natural Science Foundation of Beijing (No. 4182009)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Xu, D. Transfer Learning in Motor Imagery Brain Computer Interface: A Review. J. Shanghai Jiaotong Univ. (Sci.) 29, 37–59 (2024). https://doi.org/10.1007/s12204-022-2488-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-022-2488-4

Key words

CLC number

Document code

Navigation