Skip to main content
Log in

Numerical Study on Separation of Circulating Tumor Cell Using Dielectrophoresis in a Four-Electrode Microfluidic Device

基于四电极微流控装置使用介电泳分离循环肿瘤细胞的数值研究

  • Original Paper
  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

This numerical study proposes a cell sorting technique based on dielectrophoresis (DEP) in a microfluidic chip. Under the joint effect of DEP and fluid drag, white blood cells and circulating tumor cells are separated because of different dielectric properties. First, the mathematical models of device geometry, single cell, DEP force, electric field, and flow field are established to simulate the cell motion. Based on the simulation model, important boundary parameters are discussed to optimize the cell sorting ability of the device. A proper matching relationship between voltage and flow rate is then provided. The inlet and outlet conditions are also investigated to control the particle motion in the flow field. The significance of this study is to verify the cell separating ability of the microfluidic chip, and to provide a logistic design for the separation of rare diseased cells.

摘要

这项数值研究提出了一种基于微流控芯片的介电泳细胞分选技术. 在介电泳力和流体阻力的共同作用下, 白细胞和循环肿瘤细胞因介电特性不同而分离. 本文首先针对器件几何、 单细胞、 介电泳力、 电场和流场建立了数学模型, 模拟了细胞运动. 进而基于仿真模型, 对重要边界参数进行了讨论, 以优化该装置的细胞分选能力, 并同时提供了边界电压和流体流速之间的适当匹配关系. 此外, 还探究了流场出入口条件, 以控制其中的粒子运动. 本研究的意义在于验证了该微流控芯片的细胞分选能力, 为罕见病变细胞的分离提供了逻辑设计.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WARKIANI M E, KHOO B L, WU L, et al. Ultra-fast, label-free isolation of circulating tumor cells from blood using spiral microfluidics [J]. Nature Protocols, 2016, 11(1): 134–148.

    Article  Google Scholar 

  2. GUPTA G P, MASSAGUÉ J. Cancer metastasis: Building a framework [J]. Cell, 2006, 127(4): 679–695.

    Article  Google Scholar 

  3. ABDULLA A, LIU W J, GHOLAMIPOUR-SHIRAZI A, et al. High-throughput isolation of circulating tumor cells using cascaded inertial focusing microfluidic channel [J]. Analytical Chemistry, 2018, 90(7): 4397–4405.

    Article  Google Scholar 

  4. YAN B, FU S J, CHANG Y Y, et al. Mutational analysis of OCT4+ and OCT4 circulating tumour cells by single cell whole exome sequencing in stage I non-small cell lung cancer patients [J]. Journal of Shanghai Jiao Tong University (Science), 2021, 26(1): 40–46.

    Google Scholar 

  5. MICALIZZI D S, MAHESWARAN S, HABER D A. A conduit to metastasis: Circulating tumor cell biology [J]. Genes & Development, 2017, 31(18): 1827–1840.

    Article  Google Scholar 

  6. KIM H J, JANG W K, KIM B H, et al. Advancing liquid front shape control in capillary filling of microchannel via arrangement of microposts for microfluidic biomedical Sensors [J]. International Journal of Precision Engineering and Manufacturing, 2016, 17(1): 59–63.

    Article  Google Scholar 

  7. SARKAR A, HOU H W, MAHAN A E, et al. Multiplexed affinity-based separation of proteins and cells using inertial microfluidics [J]. Scientific Reports, 2016, 6: 23589.

    Article  Google Scholar 

  8. MARISCAL J, ALONSO-NOCELO M, MUINELOROMAY L, et al. Molecular profiling of circulating tumour cells identifies Notch1 as a principal regulator in advanced non-small cell lung cancer [J]. Scientific Reports, 2016, 6: 37820.

    Article  Google Scholar 

  9. CHEN Q, YAO L, BURNER D, et al. Epithelial membrane protein 2: A novel biomarker for circulating tumor cell recovery in breast cancer [J]. Clinical and Translational Oncology, 2019, 21(4): 433–442.

    Article  Google Scholar 

  10. GOU Y X, ZHANG S, SUN C K, et al. Sheathless inertial focusing chip combining a spiral channel with periodic expansion structures for efficient and stable particle sorting [J]. Analytical Chemistry, 2020, 92(2): 1833–1841.

    Article  Google Scholar 

  11. JOHNSTON I D, MCDONNELL M B, TAN C K L, et al. Dean flow focusing and separation of small microspheres within a narrow size range [J]. Microfluidics and Nanofluidics, 2014, 17(3): 509–518.

    Article  Google Scholar 

  12. MALEKMOHAMMADI M, AKHLAGHI E A, SOLTANI J, et al. Escape velocity sorting in optical tweezers system using a home-made piezo mirror [J]. Journal of Optics, 2020, 22(5): 055301.

    Article  Google Scholar 

  13. TEWARI KUMAR P, DECROP D, SAFDAR S, et al. Digital microfluidics for single bacteria capture and selective retrieval using optical tweezers [J]. Micromachines, 2020, 11(3): 308.

    Article  Google Scholar 

  14. ANTFOLK M, MAGNUSSON C, AUGUSTSSON P, et al. Acoustofluidic, label-free separation and simultaneous concentration of rare tumor cells from white blood cells [J]. Analytical Chemistry, 2015, 87(18): 9322–9328.

    Article  Google Scholar 

  15. GU Y Y, CHEN C Y, MAO Z M, et al. Acoustofluidic centrifuge for nanoparticle enrichment and separation [J]. Science Advances, 2021, 7(1): eabc0467.

    Article  Google Scholar 

  16. SHI J Y, LI S Y, ZHANG X F. The acoustic radiation force on a multi-layered polymer capsule placed in a fluid-filled tube [J]. Ultrasonics, 2021, 113: 106365.

    Article  Google Scholar 

  17. PIACENTINI N, MERNIER G, TORNAY R, et al. Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation [J]. Biomicrofluidics, 2011, 5(3): 34122–34128.

    Article  Google Scholar 

  18. VAN DEN DRIESCHE S, RAO V, PUCHBERGERENENGL D, et al. Continuous cell from cell separation by traveling wave dielectrophoresis [J]. Sensors and Actuators B: Chemical, 2012, 170: 207–214.

    Article  Google Scholar 

  19. RASHED M Z, WILLIAMS S J. Advances and applications of isomotive dielectrophoresis for cell analysis [J]. Analytical and Bioanalytical Chemistry, 2020, 412(16): 3813–3833.

    Article  Google Scholar 

  20. ABT V, GRINGEL F, HAN A, et al. Separation, characterization, and handling of microalgae by dielectrophoresis [J]. Microorganisms, 2020, 8(4): 540.

    Article  Google Scholar 

  21. LIN X G, YAO J, DONG H, et al. Effective cell and particle sorting and separation in screen-printed continuous-flow microfluidic devices with 3D sidewall electrodes [J]. Industrial & Engineering Chemistry Research, 2016, 55(51): 13085–13093.

    Article  Google Scholar 

  22. ALAZZAM A, MATHEW B, ALHAMMADI F. Novel microfluidic device for the continuous separation of cancer cells using dielectrophoresis [J]. Journal of Separation Science, 2017, 40(5): 1193–1200.

    Article  Google Scholar 

  23. MILOH T, NAGLER J. Travelling-wave dipolophoresis: Levitation and electrorotation of Janus nanoparticles [J]. Micromachines, 2021, 12(2): 114.

    Article  Google Scholar 

  24. SIM K, SHI L L, HE G L, et al. Mechanically flexible microfluidics for microparticle dispensing based on traveling wave dielectrophoresis [J]. Journal of Micromechanics and Microengineering, 2020, 30(2): 024001.

    Article  Google Scholar 

  25. EGGER M, DONATH E. Electrorotation measurements of diamide-induced platelet activation changes [J]. Biophysical Journal, 1995, 68(1): 364–372.

    Article  Google Scholar 

  26. GARCIA-SANCHEZ P, REN Y K, ARCENEGUI J J, et al. Alternating Current electrokinetic properties of gold-coated microspheres [J]. Langmuir, 2012, 28(39): 13861–13870.

    Article  Google Scholar 

  27. TRAINITO C I, BAYART E, SUBRA F, et al. The electrorotation as a tool to monitor the dielectric properties of spheroid during the permeabilization [J]. The Journal of Membrane Biology, 2016, 249(5): 593–600.

    Article  Google Scholar 

  28. HUANG L, ZHAO P, LIANG F, et al. Single-cell 3D electro-rotation [J]. Methods in Cell Biology, 2018, 148: 97–116.

    Article  Google Scholar 

  29. KIRBY B. Micro- and nanoscale fluid mechanics [M]. Cambridge: Cambridge University Press, 2009.

    Google Scholar 

  30. GASCOYNE P R C, VYKOUKAL J. Particle separation by dielectrophoresis [J]. Electrophoresis, 2002, 23(13): 1973–1983.

    Article  Google Scholar 

  31. ALI H, PARK C W. Numerical study on the complete blood cell sorting using particle tracing and dielectrophoresis in a microfluidic device [J]. Korea-Australia Rheology Journal, 2016, 28(4): 327–339.

    Article  Google Scholar 

  32. HENSLEE E A, SANO M B, ROJAS A D, et al. Selective concentration of human cancer cells using contactless dielectrophoresis [J]. Electrophoresis, 2011, 32(18): 2523–2529.

    Article  Google Scholar 

  33. LANNIN T, SU W W, GRUBER C, et al. Automated electrorotation shows electrokinetic separation of pancreatic cancer cells is robust to acquired chemotherapy resistance, serum starvation, and EMT [J]. Biomicrofluidics, 2016, 10(6): 064109.

    Article  Google Scholar 

  34. FUHR G, GLASSER H, MÜLLER T, et al. Cell manipulation and cultivation under a.c. electric field influence in highly conductive culture media [J]. Biochimica et Biophysica Acta, 1994, 1201(3): 353–360.

    Article  Google Scholar 

  35. COTTET J, FABREGUE O, BERGER C, et al. MyDEP: A new computational tool for dielectric modeling of particles and cells [J]. Biophysical Journal, 2019, 116(1): 12–18.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhinan Zhang  (张执南).

Additional information

Foundation item: the Base for Interdisciplinary Innovative Talent Training Project

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Ding, X. & Zhang, Z. Numerical Study on Separation of Circulating Tumor Cell Using Dielectrophoresis in a Four-Electrode Microfluidic Device. J. Shanghai Jiaotong Univ. (Sci.) 28, 391–400 (2023). https://doi.org/10.1007/s12204-022-2459-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-022-2459-9

Key words

关键词

CLC number

Document code

Navigation