Skip to main content
Log in

Recent Advances and Future Directions of Diagnostic and Prognostic Prediction Models in Ovarian Cancer

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

Ovarian cancer has one of the highest mortality rates among gynecological malignancies. This disease has a low early detection rate, a high postoperative recurrence rate, and a 5-year survival rate of only 40%. Hence, there is an urgent need to improve the early diagnosis and prognosis of ovarian cancer. Prediction models can effectively estimate the risk of disease occurrence, as well as its prognosis. Recently, many studies have established multiple ovarian cancer prediction models based on different regions and populations. These models can improve the detection rate and optimize the prognosis management to a certain extent. Herein, the construction principle of the ovarian cancer risk prediction model and its validation are summarized; furthermore, comprehensive reviews and comparisons of the different types of these models are made. Therefore, our review may be of great significance for the whole course of ovarian cancer management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA: A Cancer Journal for Clinicians, 2018, 68(6): 394–424.

    Google Scholar 

  2. ALLEMANI C, MATSUDA T, DI CARLO V, et al. Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): Analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries [J]. The Lancet, 2018, 391(10125): 1023–1075.

    Article  Google Scholar 

  3. LHEUREUX S, GOURLEY C, VERGOTE I, et al. Epithelial ovarian cancer [J]. The Lancet, 2019, 393(10177): 1240–1253.

    Article  Google Scholar 

  4. SLOMSKI A. Screening women for ovarian cancer still does more harm than good [J]. JAMA, 2012, 307(23): 2474–2475.

    Article  Google Scholar 

  5. OZA A M. Advances in prediction for ovarian cancer treatment stratification [J]. Nature Reviews Clinical Oncology, 2019, 16: 75–76.

    Article  Google Scholar 

  6. THUN M, LINET M S, CERHAN J R, et al. Cancer epidemiology and prevention [M]. 4th ed. New York, USA: Oxford University Press, 2017.

    Book  Google Scholar 

  7. RANSTAM J, COOK J A, COLLINS G S. Clinical prediction models [J]. British Journal of Surgery, 2016, 103(13): 1880–1886.

    Article  Google Scholar 

  8. MOONS K G M, ALTMAN D G, REITSMA J B, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): Explanation and elaboration [J]. Annals of Internal Medicine, 2015, 162(1): W1–W73.

    Article  Google Scholar 

  9. VICKERS A J. Prediction models in cancer care [J]. CA: A Cancer Journal for Clinicians, 2011, 61(5): 315–326.

    Google Scholar 

  10. VAN DE LAAR R, INTHOUT J, VAN GORP T, et al. External validation of three prognostic models for overall survival in patients with advanced-stage epithelial ovarian cancer [J]. British Journal of Cancer, 2014, 110: 42–48.

    Article  Google Scholar 

  11. PREVIS R, BEVIS K. HUH W, et al. A prognostic nomogram to predict overall survival in women with. recurrent ovarian cancer treated with bevacizumab and chemotherapy [J]. Gynecologic Oncology, 2014, 132(3): 531–536.

    Article  Google Scholar 

  12. KIM S I, SONG M S, HWANGBO S Y, et al. Development of Web-based nomograms to predict treatment response and prognosis of epithelial ovarian cancer [J]. Cancer Research and Treatment, 2019, 51(3): 1144–1155.

    Article  Google Scholar 

  13. TORRE L A, TRABERT B, DESANTIS C E, et al. Ovarian cancer statistics, 2018 [J]. CA: A Cancer Journal for Clinicians, 2018, 68(4): 284–296.

    Google Scholar 

  14. KURMAN R J, SHIH I M. Molecular pathogenesis and extraovarian origin of epithelial ovarian cancer — Shifting the paradigm [J]. Human Pathology, 2011, 42(7): 918–931.

    Article  Google Scholar 

  15. AUSTIN P C, TU J V. Bootstrap methods for developing predictive models [J]. The American Statistician, 2004, 58(2): 131–137.

    Article  MathSciNet  MATH  Google Scholar 

  16. ROYSTON P, AMBLER G, SAUERBREI W. The use of fractional polynomials to model continuous risk variables in epidemiology [J]. International Journal of Epidemiology, 1999, 28(5): 964–974.

    Article  Google Scholar 

  17. HARRELL F E. Regression modeling strategies: With applications to linear models, logistic regression, and survival analysis [M]. New York, USA: Springer, 2001.

    Book  MATH  Google Scholar 

  18. ALBA A C, AGORITSAS T, WALSH M, et al. Discrimination and calibration of clinical prediction models: Users’ guides to the medical literature [J]. JAMA, 2017, 318(14): 1377–1384.

    Article  Google Scholar 

  19. RAHMAN M S, AMBLER G, CHOODARIOSKOOEI B, et al. Review and evaluation of performance measures for survival prediction models in external validation settings [J]. BMC Medical Research Methodology, 2017, 17: 60.

    Article  Google Scholar 

  20. COOK N R. Use and misuse of the receiver operating characteristic curve in risk prediction [J]. Circulation, 2007, 115(7): 928–935.

    Article  Google Scholar 

  21. STEYERBERG E W, VERGOUWE Y. Towards better clinical prediction models: Seven steps for development and an ABCD for validation [J]. European Heart Journal, 2014, 35(29): 1925–1931.

    Article  Google Scholar 

  22. MOONS K G M, KENGNE A P, WOODWARD M, et al. Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker [J]. Heart (British Cardiac Society), 2012, 98(9): 683–690.

    Google Scholar 

  23. PRSKALO Z Š, BULIĆ P, LANGER S, et al. Proofs for implementation of higher HE4 and ROMA index cut-off values in ovarian cancer preoperative stratification [J]. Journal of Obstetrics and Gynaecology, 2019, 39(2): 195–201.

    Article  Google Scholar 

  24. CUI R L, WANG Y C, LI Y, et al. Clinical value of ROMA index in diagnosis of ovarian cancer: Meta-analysis [J]. Cancer Management and Research, 2019, 11: 2545–2551.

    Article  Google Scholar 

  25. NUNES N, YAZBEK J, AMBLER G, et al. Prospective evaluation of the IOTA logistic regression model LR2 for the diagnosis of ovarian cancer [J]. Ultrasound in Obstetrics & Gynecology, 2012, 40(3): 355–359.

    Article  Google Scholar 

  26. VAN CALSTER B, VAN HOORDE K, VALENTIN L, et al. Evaluating the risk of ovarian cancer before surgery using the ADNEX model to differentiate between benign, borderline, early and advanced stage invasive, and secondary metastatic tumours: Prospective multicentre diagnostic study [J]. BMJ (Clinical Research Ed.), 2014, 349: g5920.

    Google Scholar 

  27. KUCHENBAECKER K B, MCGUFFOG L, BARROWDALE D, et al. Evaluation of polygenic risk scores for breast and ovarian cancer risk prediction in BRCA1 and BRCA2 mutation carriers [J]. Journal of the National Cancer Institute, 2017, 109(7): djw302.

    Article  Google Scholar 

  28. RAMUS S J, SONG H L, DICKS E, et al. Germline mutations in the BRIP1, BARD1, PALB2, and NBN genes in women with ovarian cancer [J]. Journal of the National Cancer Institute, 2015, 107(11): djv214.

    Article  Google Scholar 

  29. KUCHENBAECKER K B, RAMUS S J, TYRER J, et al. Identification of six new susceptibility loci for invasive epithelial ovarian cancer [J]. Nature Genetics, 2015, 47: 164–171.

    Article  Google Scholar 

  30. BENTAIEB A, LI-CHANG H, HUNTSMAN D, et al. A structured latent model for ovarian carcinoma subtyping from histopathology slides[J]. Medical Image Analysis, 2017, 39: 194–205.

    Article  Google Scholar 

  31. GAVRIELIDES M A, GALLAS B D, HEWITT S M. Uncertainty in the assessment of immunohistochemical staining with optical and digital microscopy: Lessons from a reader study [C]//Medical Imaging 2015: Digital Pathology. Orlando, Fl, USA: SPIE Medical Imaging, 2015: 94200V.

    Google Scholar 

  32. CLARK T G, STEWART M E, ALTMAN D G, et al. A prognostic model for ovarian cancer [J]. British Journal of Cancer, 2001, 85(7): 944–952.

    Article  Google Scholar 

  33. CHOVANEC M, CIERNA Z, MISKOVSKA V, et al. Systemic immune-inflammation index in germ-cell tumours [J]. British Journal of Cancer, 2018, 118(6): 831–838.

    Article  Google Scholar 

  34. NIE D, GONG H, MAO X G, et al. Systemic immune-inflammation index predicts prognosis in patients with epithelial ovarian cancer: A retrospective study [J]. Gynecologic Oncology, 2019, 152(2): 259–264.

    Article  Google Scholar 

  35. SHEN S P, WANG G R, ZHANG R Y, et al. Development and validation of an immune gene-set based prognostic signature in ovarian cancer [J]. EBioMedicine, 2019, 40: 318–326.

    Article  Google Scholar 

  36. KURTA M L, EDWARDS R P, MOYSICH K B, et al. Prognosis and conditional disease-free survival among patients with ovarian cancer [J]. Journal of Clinical Oncology, 2014, 32(36): 4102–4112.

    Article  Google Scholar 

  37. BAGNOLI M, CANEVARI S, CALIFANO D, et al. Development and validation of a microRNA-based signature (MiROvaR) to predict early relapse or progression of epithelial ovarian cancer: A cohort study [J]. The Lancet Oncology, 2016, 17(8): 1137–1146.

    Article  Google Scholar 

  38. RIESTER M, WEI W, WALDRON L, et al. Risk prediction for late-stage ovarian cancer by meta-analysis of 1525 patient samples [J]. Journal of the National Cancer Institute, 2014, 106(5): dju048.

    Article  Google Scholar 

  39. YANG J Y, YOSHIHARA K, TANAKA K, et al. Predicting time to ovarian carcinoma recurrence using protein markers [J]. The Journal of Clinical Investigation, 2013, 123(9): 3740–3750.

    Article  Google Scholar 

  40. ENGBERSEN M P, VAN’T SANTA I, LOK C, et al. MRI with diffusion-weighted imaging to predict feasibility of complete cytoreduction with the peritoneal cancer index (PCI) in advanced stage ovarian cancer patients [J]. European Journal of Radiology, 2019, 114: 146–151.

    Article  Google Scholar 

  41. ESPADA M, GARCIA-FLORES J R, JIMENEZ M, et al. Diffusion-weighted magnetic resonance imaging evaluation of intra-abdominal sites of implants to predict likelihood of suboptimal cytoreductive surgery in patients with ovarian carcinoma [J]. European Radiology, 2013, 23: 2636–2642.

    Article  Google Scholar 

  42. BINDER H, SCHUMACHER M. Allowing for mandatory covariates in boosting estimation of sparse high-dimensional survival models [J]. BMC Bioinformatics, 2008, 9: 14.

    Article  Google Scholar 

  43. FRIEDMAN J, HASTIE T, TIBSHIRANI R. Regularization paths for generalized linear models via coordinate descent [J]. Journal of Statistical Software, 2010, 33(1): 1–22.

    Article  Google Scholar 

  44. LUIJKEN K, WYNANTS L, VAN SMEDEN M, et al. Changing predictor measurement procedures affected the performance of prediction models in clinical examples [J]. Journal of Clinical Epidemiology, 2020, 119: 7–18.

    Article  Google Scholar 

  45. STEYERBERG E W, VERGOUWE Y. Towards better clinical prediction models: Seven steps for development and an ABCD for validation [J]. European Heart Journal, 2014, 35(29): 1925–1931.

    Article  Google Scholar 

  46. COLLINS G S, DE GROOT J A, DUTTON S, et al. External validation of multivariable prediction models: A systematic review of methodological conduct and reporting [J]. BMC Medical Research Methodology, 2014, 14: 40.

    Article  Google Scholar 

  47. MOONS K G M, ALTMAN D G, VERGOUWE Y, et al. Prognosis and prognostic research: Application and impact of prognostic models in clinical practice [J]. BMJ (Clinical Research Ed.), 2009, 338: b606.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihua Wang  (王丽华).

Additional information

Foundation item

the Shanghai Municipal Key Clinical Specialty Program (No. shslczdzk06302)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, J., Cao, W. & Wang, L. Recent Advances and Future Directions of Diagnostic and Prognostic Prediction Models in Ovarian Cancer. J. Shanghai Jiaotong Univ. (Sci.) 26, 10–16 (2021). https://doi.org/10.1007/s12204-021-2255-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-021-2255-y

Key words

CLC number

Document code

Navigation