Skip to main content

Advertisement

Log in

Relatively Rare Populations of Invasive Cells Drive Progression of Heterogeneous Tumors

  • Original Article
  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

Breast tumors often display an astonishing degree of spatial and temporal heterogeneity, which are associated with cancer progression, drug resistance, and relapse. Triple-negative breast cancer (TNBC) is a particularly aggressive and heterogeneous subtype for which targeted therapies are scarce. Consequently, patients with TNBC have a poorer overall prognosis compared to other breast cancer patients. Within heterogeneous tumors, individual clonal subpopulations may exhibit differences in their rates of growth and degrees of invasiveness. We hypothesized that such phenotypic heterogeneity at the single-cell level may accelerate tumor progression by enhancing the overall growth and invasion of the entire tumor.

Methods

To test this hypothesis, we isolated and characterized clonal subpopulations with distinct morphologies and biomarker expression from the inherently heterogeneous 4T1 mouse mammary carcinoma cell line. We then leveraged a 3D microfluidic tumor model to reverse-engineer intratumoral heterogeneity and thus investigate how interactions between phenotypically distinct subpopulations affect tumor growth and invasion.

Results

We found that the growth and invasion of multiclonal tumors were largely dictated by the presence of cells with epithelial and mesenchymal traits, respectively. The latter accelerated overall tumor invasion, even when these cells comprised less than 1% of the initial population. Consistently, tumor progression was delayed by selectively targeting the mesenchymal subpopulation.

Discussion

This work reveals that highly invasive cells can dominate tumor phenotype and that specifically targeting these cells can slow the progression of heterogeneous tumors, which may help inform therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

RNA-seq data have been deposited at GEO under accession number GSE252177 and are available as of the date of publication.

Abbreviations

CAM:

Chorioallantoic membrane

EMT:

Epithelial–mesenchymal transition

TNBC:

Triple-negative breast cancer

References

  1. Kim, C., R. Gao, E. Sei, R. Brandt, J. Hartman, T. Hatschek, et al. Chemoresistance evolution in triple-negative breast cancer delineated by single-cell sequencing. Cell. 173(4):879–893, 2018. https://doi.org/10.1016/j.cell.2018.03.041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Torab, P., Y. Yan, M. Ahmed, H. Yamashita, J. I. Warrick, J. D. Raman, et al. Intratumoral heterogeneity promotes collective cancer invasion through NOTCH1 variation. Cells. 2021. https://doi.org/10.3390/cells10113084.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Marusyk, A., and K. Polyak. Tumor heterogeneity: causes and consequences. Biochim. Biophys. Acta. 1805(1):105–117, 2010. https://doi.org/10.1016/j.bbcan.2009.11.002.

    Article  CAS  PubMed  Google Scholar 

  4. Inda, M. M., R. Bonavia, A. Mukasa, Y. Narita, D. Sah, S. Vandenberg, et al. Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma. Genes Dev. 2010. https://doi.org/10.1101/gad.1890510.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Summerbell, E. R., J. K. Mouw, J. S. K. Bell, C. M. Knippler, B. Pedro, J. L. Arnst, et al. Epigenetically heterogeneous tumor cells direct collective invasion through filopodia-driven fibronectin micropatterning. Sci. Adv. 2020. https://doi.org/10.1126/sciadv.aaz6197.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wu, P. H., D. M. Gilkes, J. M. Phillip, A. Narkar, T. W. Cheng, J. Marchand, et al. Single-cell morphology encodes metastatic potential. Sci. Adv. 2020. https://doi.org/10.1126/sciadv.aaw6938.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fedele, C., R. W. Tothill, and G. A. McArthur. Navigating the challenge of tumor heterogeneity in cancer therapy. Cancer Discov. 4(2):146–148, 2014. https://doi.org/10.1158/2159-8290.CD-13-1042.

    Article  CAS  PubMed  Google Scholar 

  8. Kalluri, R., and R. Weinberg. The basics of epithelial–mesenchymal transition. J. Clin. Investig. 119(6):1420–1428, 2009. https://doi.org/10.1172/JCI39104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang, J., P. Antin, G. Berx, C. Blanpain, T. Brabletz, M. Bronner, et al. Guidelines and definitions for research on epithelial–mesenchymal transition. Nat. Rev. Mol. Cell Biol. 21(6):341–352, 2020. https://doi.org/10.1038/s41580-020-0237-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu, X., J. Li, B. L. Cadilha, A. Markota, C. Voigt, Z. Huang, et al. Epithelial-type systemic breast carcinoma cells with a restricted mesenchymal transition are a major source of metastasis. Sci. Adv. 2019. https://doi.org/10.1126/sciadv.aav4275.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Carey, S. P., A. Starchenko, A. L. McGregor, and C. A. Reinhart-King. Leading malignant cells initiate collective epithelial cell invasion in a three-dimensional heterotypic tumor spheroid model. Clin. Exp. Metastasis. 2013. https://doi.org/10.1007/s10585-013-9565-x.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hapach, L. A., S. P. Carey, S. C. Schwager, P. V. Taufalele, W. W. Wang, J. A. Mosier, et al. Phenotypic heterogeneity and metastasis of breast cancer cells. Cancer Res. 2021. https://doi.org/10.1158/0008-5472.CAN-20-1799.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Young, K. M., and C. A. Reinhart-King. Phenotypic heterogeneity and cooperation in the metastatic cascade. Oncoscience. 9:55–56, 2022. https://doi.org/10.18632/oncoscience.565.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hapach, L. A., W. Wang, S. C. Schwager, D. Pokhriyal, E. D. Fabiano, and C. A. Reinhart-King. Phenotypically sorted highly and weakly migratory triple negative breast cancer cells exhibit migratory and metastatic commensalism. Breast Cancer Res. 25(1):102, 2023. https://doi.org/10.1186/s13058-023-01696-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Martín-Pardillos, A., Á. Valls Chiva, G. Bande Vargas, P. Hurtado Blanco, R. Piñeiro Cid, P. J. Guijarro, et al. The role of clonal communication and heterogeneity in breast cancer. BMC Cancer 19(1):1–26, 2019. https://doi.org/10.1186/s12885-019-5883-y.

  16. Tao, K., M. Fang, J. Alroy, and G. G. Sahagian. Imagable 4T1 model for the study of late stage breast cancer. BMC Cancer. 8:228, 2008. https://doi.org/10.1186/1471-2407-8-228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Heppner, G. H., F. R. Miller, and P. M. Shekhar. Nontransgenic models of breast cancer. Breast Cancer Res. 2(5):331–334, 2000. https://doi.org/10.1186/bcr77.

    Article  CAS  PubMed  Google Scholar 

  18. Ilina, O., L. Campanello, P. G. Gritsenko, M. Vullings, C. Wang, P. Bult, et al. Intravital microscopy of collective invasion plasticity in breast cancer. Dis. Model Mech. 2018. https://doi.org/10.1242/dmm.034330.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wagenblast, E., M. Soto, S. Gutiérrez-Ángel, C. A. Hartl, A. L. Gable, A. R. Maceli, et al. A model of breast cancer heterogeneity reveals vascular mimicry as a driver of metastasis. Nature. 520(7547):358–362, 2015. https://doi.org/10.1038/nature14403.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, R., C. Jin, and X. Hu. Evidence of drug-response heterogeneity rapidly generated from a single cancer cell. Oncotarget. 8(25):41113–41124, 2017. https://doi.org/10.18632/oncotarget.17064.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yeo, S. K., X. Zhu, T. Okamoto, M. Hao, C. Wang, P. Lu, et al. Single-cell RNA-sequencing reveals distinct patterns of cell state heterogeneity in mouse models of breast cancer. Elife. 2020. https://doi.org/10.7554/eLife.58810.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schrors, B., S. Boegel, C. Albrecht, T. Bukur, V. Bukur, C. Holtstrater, et al. Multi-omics characterization of the 4T1 murine mammary gland tumor model. Front. Oncol. 10:1195, 2020. https://doi.org/10.3389/fonc.2020.01195.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Heppner, G. H., D. L. Dexter, T. DeNucci, F. R. Miller, and P. Calabresi. Heterogeneity in drug sensitivity among tumor cell subpopulations of a single mammary tumor. Cancer Res. 38(11 Pt 1):3758–3763, 1978.

    CAS  PubMed  Google Scholar 

  24. Aslakson, C. J., and F. R. Miller. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res. 52(6):1399–1405, 1992.

    CAS  PubMed  Google Scholar 

  25. Bhatia, S., J. Monkman, T. Blick, P. H. Duijf, S. H. Nagaraj, and E. W. Thompson. Multi-omics characterization of the spontaneous mesenchymal–epithelial transition in the PMC42 breast cancer cell lines. J. Clin. Med. 8(8):1253, 2019. https://doi.org/10.3390/jcm8081253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shcherbakova, D. M., and V. V. Verkhusha. Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat. Methods. 10(8):751–754, 2013. https://doi.org/10.1038/nmeth.2521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Oliva-Trastoy, M., M. Defais, and F. Larminat. Resistance to the antibiotic Zeocin by stable expression of the Sh ble gene does not fully suppress Zeocin-induced DNA cleavage in human cells. Mutagen. 20(2):111–114, 2005. https://doi.org/10.1093/mutage/gei016.

    Article  Google Scholar 

  28. Piotrowski-Daspit, A. S., and C. M. Nelson. Engineering three-dimensional epithelial tissues embedded within extracellular matrix. J. Vis. Exp. 2016. https://doi.org/10.3791/54283.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Piotrowski-Daspit, A. S., J. Tien, and C. M. Nelson. Interstitial fluid pressure regulates collective invasion in engineered human breast tumors via Snail, vimentin, and E-cadherin. Integr. Biol. 8(3):319–331, 2016. https://doi.org/10.1039/c5ib00282f.

    Article  CAS  Google Scholar 

  30. Piotrowski-Daspit, A. S., A. K. Simi, M. Pang, J. Tien, and C. M. Nelson. A 3D culture model to study how fluid pressure and flow affect the behavior of aggregates of epithelial cells. In: Mammary Gland Development: Methods and Protocols (Methods in Molecular Biology Series), edited by F. Martin, T. Stein, and J. Howlin. New York: Springer, 2017, pp. 245–257.

    Chapter  Google Scholar 

  31. Teng, Y. Hanging drop aggregation assay of breast cancer cells. Bio-Protocols. 2015. https://doi.org/10.21769/BioProtoc.1393.

    Article  Google Scholar 

  32. Foty, R. A simple hanging drop cell culture protocol for generation of 3D spheroids. J. Vis. Exp. 2011. https://doi.org/10.3791/2720.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Spurlin III, J., and P. Lwigale. A technique to increase accessibility to late-stage chick embryos for in ovo manipulations. Dev. Dyn. 2013. https://doi.org/10.1002/dvdy.23907.

  34. Aleskandarany, M. A., M. E. Vandenberghe, C. Marchiò, I. O. Ellis, A. Sapino, and E. A. Rakha. Tumour heterogeneity of breast cancer: from morphology to personalised medicine. Pathobiology. 85(1–2):23–34, 2018. https://doi.org/10.1159/000477851.

    Article  PubMed  Google Scholar 

  35. Aiello, N. M., R. Maddipati, R. J. Norgard, D. Balli, J. Li, S. Yuan, et al. EMT subtype influences epithelial plasticity and mode of cell migration. Dev. Cell. 2018. https://doi.org/10.1016/j.devcel.2018.05.027.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mendez, M. G., S. Kojima, and R. D. Goldman. Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition. FASEB J. 2010. https://doi.org/10.1096/fj.09-151639.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Prasad, A., and E. Alizadeh. Cell form and function: interpreting and controlling the shape of adherent cells. Trends Biotechnol. 2019. https://doi.org/10.1016/j.tibtech.2018.09.007.

    Article  PubMed  Google Scholar 

  38. Mueller-Klieser, W. Multicellular spheroids. A review on cellular aggregates in cancer research. J. Cancer Res. Clin. Oncol. 1987. https://doi.org/10.1007/BF00391431.

    Article  PubMed  Google Scholar 

  39. Graziani, V., I. Rodriguez-Hernandez, O. Maiques, and V. Sanz-Moreno. The amoeboid state as part of the epithelial-to-mesenchymal transition programme. Trends Cell Biol. 32(3):228–242, 2022. https://doi.org/10.1016/j.tcb.2021.10.004.

    Article  CAS  PubMed  Google Scholar 

  40. Tien, J., J. G. Truslow, and C. M. Nelson. Modulation of invasive phenotype by interstitial pressure-driven convection in aggregates of human breast cancer cells. PLoS ONE. 2012. https://doi.org/10.1371/journal.pone.0045191.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tien, J., U. Ghani, Y. W. Dance, A. J. Seibel, M. C. Karakan, K. L. Ekinci, et al. Matrix pore size governs escape of human breast cancer cells from a microtumor to an empty cavity. Iscience. 2020. https://doi.org/10.1016/j.isci.2020.101673.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Liu, Y., Y. Fang, L. Bao, F. Wu, S. Wang, and S. Hao. Intercellular communication reveals therapeutic potential of epithelial–mesenchymal transition in triple-negative breast cancer. Biomolecules. 2022. https://doi.org/10.3390/biom12101478.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Konen, J., E. Summerbell, B. Dwivedi, K. Galior, Y. Hou, L. Rusnak, et al. Image-guided genomics of phenotypically heterogeneous populations reveals vascular signalling during symbiotic collective cancer invasion. Nat. Commun. 8:15078, 2017. https://doi.org/10.1038/ncomms15078.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Saenz-de-Santa-Maria, I., L. Celada, and M. D. Chiara. The leader position of mesenchymal cells expressing N-cadherin in the collective migration of epithelial cancer. Cells. 2020. https://doi.org/10.3390/cells9030731.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hallou, A., J. Jennings, and A. J. Kabla. Tumour heterogeneity promotes collective invasion and cancer metastatic dissemination. R. Soc. Open Sci.4(8):161007, 2017. https://doi.org/10.1098/rsos.161007.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhao, B., J. R. Pritchard, D. A. Lauffenburger, and M. T. Hemann. Addressing genetic tumor heterogeneity through computationally predictive combination therapy. Cancer Discov. 4(2):166–174, 2014. https://doi.org/10.1158/2159-8290.CD-13-0465.

    Article  CAS  PubMed  Google Scholar 

  47. Zhao, B., M. T. Hemann, and D. A. Lauffenburger. Intratumor heterogeneity alters most effective drugs in designed combinations. Proc. Natl Acad. Sci. USA. 111(29):10773–10778, 2014. https://doi.org/10.1073/pnas.1323934111.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. McQuerry, J. A., J. T. Chang, D. D. L. Bowtell, A. Cohen, and A. H. Bild. Mechanisms and clinical implications of tumor heterogeneity and convergence on recurrent phenotypes. J. Mol. Med. 2017. https://doi.org/10.1007/s00109-017-1587-4.

    Article  PubMed  Google Scholar 

  49. Kleppe, M., and R. L. Levine. Tumor heterogeneity confounds and illuminates: assessing the implications. Nat. Med. 2014. https://doi.org/10.1038/nm.3522.

    Article  PubMed  Google Scholar 

  50. Tammela, T., and J. Sage. Investigating tumor heterogeneity in mouse models. Annu. Rev. Cancer Biol. 2020. https://doi.org/10.1146/annurev-cancerbio-030419-033413.

    Article  PubMed  Google Scholar 

  51. Denison, T. A., and Y. H. Bae. Tumor heterogeneity and its implication for drug delivery. J. Control Release. 164(2):187–191, 2012. https://doi.org/10.1016/j.jconrel.2012.04.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Marusyk, A., M. Janiszewska, and K. Polyak. Intratumor heterogeneity: The Rosetta Stone of therapy resistance. Cancer Cell. 37(4):471–484, 2020. https://doi.org/10.1016/j.ccell.2020.03.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hayford, C. E., D. R. Tyson, C. J. Robbins III., P. L. Frick, V. Quaranta, and L. A. Harris. An in vitro model of tumor heterogeneity resolves genetic, epigenetic, and stochastic sources of cell state variability. PLoS Biol.19(6):e3000797, 2021. https://doi.org/10.1371/journal.pbio.3000797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zellmer, V. R., and S. Zhang. Evolving concepts of tumor heterogeneity. Cell Biosci. 4(1):1–8, 2014. https://doi.org/10.1186/2045-3701-4-69.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the National Institutes of Health (CA187692, CA214292), the New Jersey Health Foundation, and a Faculty Scholars Award from the Howard Hughes Medical Institute. SEL was supported in part by the National Center for Advancing Translational Sciences of the National Institutes of Health (TL1TR003019, UL1TR003017). MCB was supported in part by the Ludwig Princeton Branch and by a New Jersey Commission on Cancer Research Predoctoral Fellowship (COCR22PRF009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celeste M. Nelson.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2390 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leggett, S.E., Brennan, M.C., Martinez, S. et al. Relatively Rare Populations of Invasive Cells Drive Progression of Heterogeneous Tumors. Cel. Mol. Bioeng. 17, 7–24 (2024). https://doi.org/10.1007/s12195-023-00792-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-023-00792-w

Keywords

Navigation