Skip to main content
Log in

Advances in Experiments and Modeling in Micro- and Nano-Biomechanics: A Mini Review

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Recent advances in micro- and nano-technologies and high-end computing have enabled the development of new experimental and modeling approaches to study biomechanics at the micro- and nano-scales that were previously not possible. These new cutting-edge approaches are contributing toward our understanding in emerging areas such as mechanobiology and mechanochemistry. Another important potential contribution lies in translational medicine, since biomechanical studies at the cellular and molecular levels have direct relevance in areas such disease diagnosis, nano-medicine and drug delivery. Thus, the developed experimental and modeling approaches are critical in elucidating important mechanistic insights in both basic sciences and clinical treatment. While it is hard to cover all the recent advances in this mini-review, we focus on several important approaches. For experimental techniques, we review the assays involving shear flow, cellular imaging, microbead, microcontact printing, and micropillars at the micro-scale, and micropipette aspiration, optical tweezers, parallel flow chamber, and atomic force microscopy at the nano-scale. In modeling and simulations, we outline the theoretical modeling for actin dynamics in migrating cell and actin-based cell motility in cellular mechanics, as well as the receptor–ligand binding in cell adhesion and the application of free, steered, and flow molecular dynamics simulations in molecular biomechanics. Relevant scientific issues and applications are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Adcock, S. A., and J. A. McCammon. Molecular dynamics: survey of methods for simulating the activity of proteins. Chem. Rev. 106:1589–1615, 2006.

    Article  Google Scholar 

  2. Ashkin, A., J. M. Dziedzic, and T. Yamane. Optical trapping and manipulation of single cells using infrared-laser beams. Nature 330:769–771, 1987.

    Article  Google Scholar 

  3. Atilgan, E., D. Wirtz, and S. X. Sun. Mechanics and dynamics of actin-driven thin membrane protrusions. Biophys. J. 90:65–76, 2006.

    Article  Google Scholar 

  4. Bell, G. I. Models for specific adhesion of cells to cells. Science 200:618–627, 1978.

    Article  Google Scholar 

  5. Bell, G. I., M. Dembo, and P. Bongrand. Cell adhesion. Competition between nonspecific repulsion and specific bonding. Biophys. J. 45:1051–1064, 1984.

    Article  Google Scholar 

  6. Bhatia, S. K., M. R. King, and D. A. Hammer. The state diagram for cell adhesion mediated by two receptors. Biophys. J. 84:2671–2690, 2003.

    Article  Google Scholar 

  7. Binnig, G., C. F. Quate, and C. Gerber. Atomic force microscope. Phys. Rev. Lett. 56:930–933, 1986.

    Article  Google Scholar 

  8. Borisy, G. G., and T. M. Svitkina. Actin machinery: pushing the envelope. Curr. Opin. Cell Biol. 12:104–112, 2000.

    Article  Google Scholar 

  9. Caputo, K. E., and D. A. Hammer. Adhesive dynamics simulation of G-protein-mediated chemokine-activated neutrophil adhesion. Biophys. J. 96:2989–3004, 2009.

    Article  Google Scholar 

  10. Chang, K. C., D. F. J. Tees, and D. A. Hammer. The state diagram for cell adhesion under flow: leukocyte rolling and firm adhesion. Proc. Natl Acad. Sci. USA 97:11262–11267, 2000.

    Article  Google Scholar 

  11. Chen, W., E. A. Evans, R. P. McEver, and C. Zhu. Monitoring receptor–ligand interactions between surfaces by thermal fluctuations. Biophys. J. 94:694–701, 2008.

    Article  Google Scholar 

  12. Chen, W., J. Z. Lou, and C. Zhu. Molecular dynamics simulated unfolding of von Willebrand factor A domains by force. Cell. Mol. Bioeng. 2:75–86, 2009.

    Article  Google Scholar 

  13. Chen, W., J. Z. Lou, and C. Zhu. Simulated thermal unfolding of the von Willebrand factor A domains. Cell. Mol. Bioeng. 3:117–127, 2010.

    Article  Google Scholar 

  14. Chen, Z., J. Z. Lou, C. Zhu, and K. Schulten. Flow-induced structural transition in the beta-switch region of glycoprotein Ib. Biophys. J. 95:1303–1313, 2008.

    Article  Google Scholar 

  15. Chesla, S. E., P. Selvaraj, and C. Zhu. Measuring two-dimensional receptor–ligand binding kinetics by micropipette. Biophys. J. 75:1553–1572, 1998.

    Article  Google Scholar 

  16. Chiu, J. J., C. N. Chen, P. L. Lee, C. T. Yang, H. S. Chuang, et al. Analysis of the effect of disturbed flow on monocytic adhesion to endothelial cells. J. Biomech. 36:1883–1895, 2003.

    Article  Google Scholar 

  17. Davies, P. F., A. Remuzzi, E. J. Gordon, C. F. Dewey, Jr., and M. A. Gimbrone, Jr. Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc. Natl Acad. Sci. USA 83:2114–2117, 1986.

    Article  Google Scholar 

  18. del Rio, A., R. Perez-Jimenez, R. C. Liu, P. Roca-Cusachs, J. M. Fernandez, et al. Stretching single talin rod molecules activates vinculin binding. Science 323:638–641, 2009.

    Article  Google Scholar 

  19. Dembo, M., D. C. Torney, K. Saxman, and D. Hammer. The reaction-limited kinetics of membrane-to-surface adhesion and detachment. Proc. R. Soc. Lond. B Biol. Sci. 234:55–83, 1988.

    Article  Google Scholar 

  20. Deng, L. H., N. J. Fairbank, B. Fabry, P. G. Smith, and G. N. Maksym. Localized mechanical stress induces time-dependent actin cytoskeletal remodeling and stiffening in cultured airway smooth muscle cells. Am. J. Physiol. Cell Physiol. 287:C440–C448, 2004.

    Article  Google Scholar 

  21. DePaola, N., P. F. Davies, W. F. Pritchard, L. Florez, N. Harbeck, et al. Spatial and temporal regulation of gap junction connexin43 in vascular endothelial cells exposed to controlled disturbed flows in vitro. Proc. Natl Acad. Sci. USA 96:3154–3159, 1999.

    Article  Google Scholar 

  22. Dewey, C. F., S. R. Bussolari, M. A. Gimbrone, and P. F. Davies. The Dynamic response of vascular endothelial-cells to fluid shear-stress. J. Biomech. Eng. 103:177–185, 1981.

    Article  Google Scholar 

  23. Doyle, A. D., F. W. Wang, K. Matsumoto, and K. M. Yamada. One-dimensional topography underlies three-dimensional fibrillar cell migration. J. Cell Biol. 184:481–490, 2009.

    Article  Google Scholar 

  24. du Roure, O., A. Saez, A. Buguin, R. H. Austin, P. Chavrier, et al. Force mapping in epithelial cell migration. Proc. Natl Acad. Sci. USA 102:2390–2395, 2005.

    Article  Google Scholar 

  25. Evans, E., K. Ritchie, and R. Merkel. Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. Biophys. J. 68:2580–2587, 1995.

    Article  Google Scholar 

  26. Forman, J. R., and J. Clarke. Mechanical unfolding of proteins: insights into biology, structure and folding. Curr. Opin. Struct. Biol. 17:58–66, 2007.

    Article  Google Scholar 

  27. Frangos, J. A., L. V. McIntire, and S. G. Eskin. Shear stress induced stimulation of mammalian cell metabolism. Biotechnol. Bioeng. 32:1053–1060, 1988.

    Article  Google Scholar 

  28. Frye, S. R., A. Yee, S. G. Eskin, R. Guerra, X. Y. Cong, et al. CDNA microarray analysis of endothelial cells subjected to cyclic mechanical strain: importance of motion control. Physiol. Genomics 21:124–130, 2005.

    Article  Google Scholar 

  29. Galbraith, C. G., R. Skalak, and S. Chien. Shear stress induces spatial reorganization of the endothelial cell cytoskeleton. Cell Motil. Cytoskeleton 40:317–330, 1998.

    Article  Google Scholar 

  30. Galbraith, C. G., K. M. Yamada, and M. P. Sheetz. The relationship between force and focal complex development. J. Cell Biol. 159:695–705, 2002.

    Article  Google Scholar 

  31. Grimm, H. P., A. B. Verkhovsky, A. Mogilner, and J. J. Meister. Analysis of actin dynamics at the leading edge of crawling cells: implications for the shape of keratocyte lamellipodia. Eur. Biophys. J. 32:563–577, 2003.

    Article  Google Scholar 

  32. Gunnerson, K. N., Y. V. Pereverzev, and O. V. Prezhdo. Atomistic simulation combined with analytic theory to study the response of the P-selectin/PSGL-1 complex to an external force. J. Phys. Chem. B 113:2090–2100, 2009.

    Article  Google Scholar 

  33. Hammer, D. A., and S. M. Apte. Simulation of cell rolling and adhesion on surfaces in shear-flow. General results and analysis of selectin-mediated neutrophil adhesion. Biophys. J. 63:35–57, 1992.

    Article  Google Scholar 

  34. Hayakawa, K., H. Tatsumi, and M. Sokabe. Actin stress fibers transmit and focus force to activate mechanosensitive channels. J. Cell Sci. 121:496–503, 2008.

    Article  Google Scholar 

  35. Huang, J., J. Chen, S. E. Chesla, T. Yago, P. Mehta, et al. Quantifying the effects of molecular orientation and length on two-dimensional receptor–ligand binding kinetics. J. Biol. Chem. 279:44915–44923, 2004.

    Article  Google Scholar 

  36. Huang, J., V. I. Zarnitsyna, B. Y. Liu, L. J. Edwards, N. Jiang, et al. The kinetics of two-dimensional TCR and pMHC interactions determine T-cell responsiveness. Nature 464:932–936, 2010.

    Article  Google Scholar 

  37. Huisman, E. M., T. van Dillen, P. R. Onck, and E. Van der Giessen. Three-dimensional cross-linked F-actin networks: relation between network architecture and mechanical behavior. Phys. Rev. Lett. 99:208103, 2007.

    Article  Google Scholar 

  38. Icard-Arcizet, D., O. Cardoso, A. Richert, and S. Henon. Cell stiffening in response to external stress is correlated to actin recruitment. Biophys. J. 94:2906–2913, 2008.

    Article  Google Scholar 

  39. Inoue, Y., and T. Adachi. Coarse-grained Brownian ratchet model of membrane protrusion on cellular scale. Biomech. Model. Mechanobiol., 2010. doi:10.1007/s10237-010-0250-6.

  40. Interlandi, G., and W. Thomas. The catch bond mechanism between von Willebrand Factor and platelet surface receptors investigated by molecular dynamics simulations. Proteins 78:2506–2522, 2010.

    Google Scholar 

  41. Kaplanski, G., C. Farnarier, O. Tissot, A. Pierres, A. M. Benoliel, et al. Granulocyte endothelium initial adhesion—analysis of transient binding events mediated by E-selectin in a laminar shear-flow. Biophys. J. 64:1922–1933, 1993.

    Article  Google Scholar 

  42. Kataoka, N., S. Ujita, and M. Sato. Effect of flow direction on the morphological responses of cultured bovine aortic endothelial cells. Med. Biol. Eng. Comput. 36:122–128, 1998.

    Article  Google Scholar 

  43. Keren, K., Z. Pincus, G. M. Allen, E. L. Barnhart, G. Marriott, et al. Mechanism of shape determination in motile cells. Nature 453:475–480, 2008.

    Article  Google Scholar 

  44. Kilian, K. A., B. Bugarija, B. T. Lahn, and M. Mrksich. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl Acad. Sci. USA 107:4872–4877, 2010.

    Article  Google Scholar 

  45. Kim, T., W. Hwang, H. Lee, and R. D. Kamm. Computational analysis of viscoelastic properties of crosslinked actin networks. PLoS Comput. Biol. 5:e1000439, 2009.

    Article  Google Scholar 

  46. Klepeis, J. L., et al. Long-timescale molecular dynamics simulations of protein structure and function. Curr. Opin. Struct. Biol. 19(2):120–127, 2009.

    Article  Google Scholar 

  47. Krasik, E. F., K. E. Caputo, and D. A. Hammer. Adhesive dynamics simulation of neutrophil arrest with stochastic activation. Biophys. J. 95:1716–1728, 2008.

    Article  Google Scholar 

  48. Krasik, E. F., K. L. Yee, and D. A. Hammer. Adhesive dynamics simulation of neutrophil arrest with deterministic activation. Biophys. J. 91:1145–1155, 2006.

    Article  Google Scholar 

  49. Lacayo, C. I., Z. Pincus, M. M. VanDuijn, C. A. Wilson, D. A. Fletcher, et al. Emergence of large-scale cell morphology and movement from local actin filament growth dynamics. PLoS Biol. 5:2035–2052, 2007.

    Article  Google Scholar 

  50. LaMack, J. A., and M. H. Friedman. Individual and combined effects of shear stress magnitude and spatial gradient on endothelial cell gene expression. Am. J. Physiol. Heart Circ. Physiol. 293:H2853–H2859, 2007.

    Article  Google Scholar 

  51. Lauffenburger, D. A., and A. F. Horwitz. Cell migration: a physically integrated molecular process. Cell 84:359–369, 1996.

    Article  Google Scholar 

  52. Levesque, M. J., and R. M. Nerem. The elongation and orientation of cultured endothelial cells in response to shear stress. J. Biomech. Eng. 107:341–347, 1985.

    Article  Google Scholar 

  53. Levesque, M. J., R. M. Nerem, and E. A. Sprague. Vascular endothelial-cell proliferation in culture and the influence of flow. Biomaterials 11:702–707, 1990.

    Article  Google Scholar 

  54. Li, S., J. L. Guan, and S. Chien. Biochemistry and biomechanics of cell motility. Annu. Rev. Biomed. Eng. 7:105–150, 2005.

    Article  Google Scholar 

  55. Liu, L., Y. Fang, Q. Huang, and J. Wu. A rigidity-enhanced antimicrobial activity: a case for linear cationic alpha-helical peptide HP(2–20) and its four analogues. PLoS One 6(1):e16441, 2011.

    Article  Google Scholar 

  56. Liu, Z., J. L. Tan, D. M. Cohen, M. T. Yang, N. J. Sniadecki, et al. Mechanical tugging force regulates the size of cell–cell junctions. Proc. Natl Acad. Sci. USA 107:9944–9949, 2010.

    Article  Google Scholar 

  57. Long, M., H. L. Goldsmith, D. F. J. Tees, and C. Zhu. Probabilistic modeling of shear-induced formation and breakage of doublets cross-linked by receptor–ligand bonds. Biophys. J. 76:1112–1128, 1999.

    Article  Google Scholar 

  58. Lou, J. Z., and C. Zhu. A structure-based sliding–rebinding mechanism for catch bonds. Biophys. J. 92:1471–1485, 2007.

    Article  Google Scholar 

  59. Lou, J. Z., and C. Zhu. Flow induces loop-to-beta-hairpin transition on the beta-switch of platelet glycoprotein Ib alpha. Proc. Natl Acad. Sci. USA 105:13847–13852, 2008.

    Article  Google Scholar 

  60. Lü, S. Q., and M. Long. Forced extension of P-selectin construct using steered molecular dynamics. Chin. Sci. Bull. 49:10–17, 2004.

    Google Scholar 

  61. Lü, S. Q., Y. Zhang, and M. Long. Visualization of allostery in P-selectin lectin domain using MD simulations. PLoS One 5(12):e15417, 2010.

    Article  Google Scholar 

  62. Maree, A. F. M., A. Jilkine, A. Dawes, V. A. Grieneisen, and L. Edelstein-Keshet. Polarization and movement of keratocytes: a multiscale modelling approach. Bull. Math. Biol. 68:1169–1211, 2006.

    Article  Google Scholar 

  63. Matthews, B. D., D. R. Overby, R. Mannix, and D. E. Ingber. Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. J. Cell Sci. 119:508–518, 2006.

    Article  Google Scholar 

  64. McBeath, R., D. M. Pirone, C. M. Nelson, K. Bhadriraju, and C. S. Chen. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6:483–495, 2004.

    Article  Google Scholar 

  65. Metaxa, E., H. Meng, S. R. Kaluvala, M. P. Szymanski, R. A. Paluch, et al. Nitric oxide-dependent stimulation of endothelial cell proliferation by sustained high flow. Am. J. Physiol. Heart Circ. Physiol. 295:H736–H742, 2008.

    Article  Google Scholar 

  66. Mogilner, A., and L. Edelstein-Keshet. Regulation of actin dynamics in rapidly moving cells: a quantitative analysis. Biophys. J. 83:1237–1258, 2002.

    Article  Google Scholar 

  67. Mogilner, A., and G. Oster. Cell motility driven by actin polymerization. Biophys. J. 71:3030–3045, 1996.

    Article  Google Scholar 

  68. Mogilner, A., and G. Oster. Force generation by actin polymerization II: the elastic ratchet and tethered filaments. Biophys. J. 84:1591–1605, 2003.

    Article  Google Scholar 

  69. Mogilner, A., and B. Rubinstein. The physics of filopodial protrusion. Biophys. J. 89:782–795, 2005.

    Article  Google Scholar 

  70. Morigi, M., C. Zoja, M. Figliuzzi, M. Foppolo, G. Micheletti, et al. Fluid shear-stress modulates surface expression of adhesion molecules by endothelial-cells. Blood 85:1696–1703, 1995.

    Google Scholar 

  71. Nagel, T., N. Resnick, C. F. Dewey, and M. A. Gimbrone. Vascular endothelial cells respond to spatial gradients in fluid shear stress by enhanced activation of transcription factors. Thromb. Vasc. Biol. 19:1825–1834, 1999.

    Article  Google Scholar 

  72. Nakaya, M., M. Kitano, M. Masuda, and S. Nagata. Spationtemporal activation of Rac1 for engulfment of apoptotic cells. Proc. Natl Acad. Sci. USA 195:9198–9203, 2008.

    Article  Google Scholar 

  73. Nishio, K., Y. Ueki, N. Sakamoto, and M. Sato. Effect of initial orientation of vascular endothelial cells on activation of RhoGTPases induced by fluid shear stress. Cell. Mol. Bioeng. 2:160–168, 2011.

    Article  Google Scholar 

  74. Nomura, H., C. Ishikawa, T. Komatsuda, J. Ando, and A. Kamiya. A disk-type apparatus for applying fluid shear-stress on cultured endothelial-cell. Biorheology 25:461–470, 1988.

    Google Scholar 

  75. Paul, R., P. Heil, J. P. Spatz, and U. S. Schwarz. Propagation of mechanical stress through the actin cytoskeleton toward focal adhesions: model and experiment. Biophys. J. 94:1470–1482, 2008.

    Article  Google Scholar 

  76. Pawar, P., S. Jadhav, C. D. Eggleton, and K. Konstantopoulos. Roles of cell and microvillus deformation and receptor–ligand binding kinetics in cell rolling. Am. J. Physiol. Heart Circ. Physiol. 295:H1439–H1450, 2008.

    Article  Google Scholar 

  77. Peskin, C. S., G. M. Odell, and G. F. Oster. Cellular motions and thermal fluctuations: the Brownian ratchet. Biophys. J. 65:316–324, 1993.

    Article  Google Scholar 

  78. Phillips, J. C., R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26:1781–1802, 2005.

    Article  Google Scholar 

  79. Pollard, T. D., and G. G. Borisy. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465, 2003.

    Article  Google Scholar 

  80. Poujade, M., E. Grasland-Mongrain, A. Hertzog, J. Jouanneau, P. Chavrier, et al. Collective migration of an epithelial monolayer in response to a model wound. Proc. Natl Acad. Sci. USA 104:15988–15993, 2007.

    Article  Google Scholar 

  81. Rubinstein, B., K. Jacobson, and A. Mogilner. Multiscale two-dimensional modeling of a motile simple-shaped cell. Multiscale Model. Sim. 3:413–439, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  82. Sakamoto, N., N. Saito, X. B. Han, T. Ohashi, and M. Sato. Effect of spatial gradient in fluid shear stress on morphological changes in endothelial cells in response to flow. Biochem. Biophys. Res. Commun. 395:264–269, 2010.

    Article  Google Scholar 

  83. Sasamoto, A., M. Nagino, S. Kobayashi, K. Naruse, Y. Nimura, et al. Mechanotransduction by integrin is essential for IL-6 secretion from endothelial cells in response to uniaxial continuous stretch. Am. J. Physiol. Cell Physiol. 288:C1012–C1022, 2005.

    Article  Google Scholar 

  84. Sato, M., K. Nagayama, N. Kataoka, M. Sasaki, and K. Hane. Local mechanical properties measured by atomic force microscopy for cultured bovine endothelial cells exposed to shear stress. J. Biomech. 33:127–135, 2000.

    Article  Google Scholar 

  85. Sawada, Y., M. Tamada, B. J. Dubin-Thaler, O. Cherniavskaya, R. Sakai, et al. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127:1015–1026, 2006.

    Article  Google Scholar 

  86. Shrader, C. D., H. G. Ressetar, J. Luo, E. V. Cilento, and F. D. Reilly. Acute stretch promotes endothelial cell proliferation in wounded healing mouse skin. Arch. Dermatol. Res. 300:495–504, 2008.

    Article  Google Scholar 

  87. Small, J. V., M. Herzog, and K. Anderson. Actin filament organization in the fish keratocyte lamellipodium. J. Cell Biol. 129:1275–1286, 1995.

    Article  Google Scholar 

  88. Sun, G. Y., Y. Zhang, B. Huo, and M. Long. Surface-bound selectin–ligand binding is regulated by carrier diffusion. Eur. Biophys. J. 38:701–711, 2009.

    Article  Google Scholar 

  89. Szymanski, M. P., E. Metaxa, H. Meng, and J. Kolega. Endothelial cell layer subjected to impinging flow mimicking the apex of an arterial bifurcation. Ann. Biomed. Eng. 36:1681–1689, 2008.

    Article  Google Scholar 

  90. Ter-Oganessian, N., B. Quinn, D. A. Pink, and A. Boulbitch. Active microrheology of networks composed of semiflexible polymers: computer simulation of magnetic tweezers. Phys. Rev. E 72:041510, 2005.

    Article  Google Scholar 

  91. Thery, M., A. Jimenez-Dalmaroni, V. Racine, M. Bornens, and F. Julicher. Experimental and theoretical study of mitotic spindle orientation. Nature 447:493–496, 2007.

    Article  Google Scholar 

  92. Thery, M., V. Racine, A. Pepin, M. Piel, Y. Chen, et al. The extracellular matrix guides the orientation of the cell division axis. Nat. Cell Biol. 7:947–953, 2005.

    Article  Google Scholar 

  93. Ueki, Y., N. Sakamoto, and M. Sato. Direct measurement of shear strain in adherent vascular endothelial cells exposed to fluid shear stress. Biochem. Biophys. Res. Commun. 394:94–99, 2010.

    Article  Google Scholar 

  94. Ueki, Y., N. Sakamoto, and M. Sato. Cyclic force applied to focal adhesions induces actin recruitment depending on the dynamic loading pattern. Open Biomed. Eng. J. 4:129–134, 2010.

    Article  Google Scholar 

  95. Usami, S., H. H. Chen, Y. Zhao, S. Chien, and R. Skalak. Design and construction of a linear shear stress flow chamber. Ann. Biomed. Eng. 21:77–83, 1993.

    Article  Google Scholar 

  96. Verkhovsky, A. B., T. M. Svitkina, and G. G. Borisy. Network contraction model for cell translocation and retrograde flow. Biochem. Soc. Symp. 65:207–222, 1999.

    Google Scholar 

  97. Vicente-Manzanares, M., X. Ma, R. S. Adelstein, and A. R. Horwitz. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat. Rev. Mol. Cell Biol. 10:778–790, 2009.

    Article  Google Scholar 

  98. Wang, G. M., and W. C. Sandberg. Complete all-atom hydrodynamics of protein unfolding in uniform flow. Nanotechnology 21:235101, 2010.

    Article  Google Scholar 

  99. Wang, N., and Z. Suo. Long-distance propagation of forces in a cell. Biochem. Biophys. Res. Commun. 328:1133–1138, 2005.

    Article  Google Scholar 

  100. Wu, J. H., Y. Fang, V. I. Zarnitsyna, T. P. Tolentino, M. L. Dustin, et al. A coupled diffusion-kinetics model for analysis of contact-area FRAP experiment. Biophys. J. 95:910–919, 2008.

    Article  Google Scholar 

  101. Wu, L., B. T. Xiao, X. L. Jia, Y. Zhang, S. Q. Lü, et al. Impact of carrier stiffness and microtopology on two-dimensional kinetics of P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) interactions. J. Biol. Chem. 282:9846–9854, 2007.

    Article  Google Scholar 

  102. Wuang, S. C., B. Ladoux, and C. T. Lim. Probing the chemo-mechanical effects of an anti-cancer drug emodin on breast cancer cells. Mol. Cell Bioeng., 2011. doi:10.1007/s12195-011-0163-1.

  103. Yago, T., J. Z. Lou, T. Wu, J. Yang, J. J. Miner, et al. Platelet glycoprotein Ibalpha forms catch bonds with human WT vWF but not with type 2B von Willebrand disease vWF. J. Clin. Invest. 118:3195–3207, 2008.

    Google Scholar 

  104. Yam, P. T., C. A. Wilson, L. Ji, B. Hebert, E. L. Barnhart, et al. Actin–myosin network reorganization breaks symmetry at the cell rear to spontaneously initiate polarized cell motility. J. Cell Biol. 178:1207–1221, 2007.

    Article  Google Scholar 

  105. Yu, Y., and J. Y. Shao. Simultaneous tether extraction contributes to neutrophil rolling stabilization: a model study. Biophys. J. 92:418–429, 2007.

    Article  Google Scholar 

  106. Zarbock, A., and K. Ley. Mechanisms and consequences of neutrophil interaction with the endothelium. Am. J. Pathol. 172:1–7, 2008.

    Article  Google Scholar 

  107. Zhang, F., W. D. Marcus, N. H. Goyal, P. Selvaraj, T. A. Springer, et al. Two-dimensional kinetics regulation of alpha(L)beta(2)-ICAM-1 interaction by conformational changes of the alpha(L)-inserted domain. J. Biol. Chem. 280:42207–42218, 2005.

    Article  Google Scholar 

  108. Zhao, Y. H., S. Chien, and S. Weinbaum. Dynamic contact forces on leukocyte microvilli and their penetration of the endothelial glycocalyx. Biophys. J. 80:1124–1140, 2001.

    Article  Google Scholar 

  109. Zou, X., Y. Liu, Z. Chen, G. I. Cardenas-Jiron, and K. Schulten. Flow-induced beta-hairpin folding of the glycoprotein Ibalpha beta-switch. Biophys. J. 99:1182–1191, 2010.

    Article  Google Scholar 

Download references

Acknowledgment

The authors are grateful for technical assistances from Dr. Yan Zhang.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mian Long, Masaaki Sato or Chwee Teck Lim.

Additional information

Associate Editor Edward Guo oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, M., Sato, M., Lim, C.T. et al. Advances in Experiments and Modeling in Micro- and Nano-Biomechanics: A Mini Review. Cel. Mol. Bioeng. 4, 327–339 (2011). https://doi.org/10.1007/s12195-011-0183-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-011-0183-x

Keywords

Navigation