Skip to main content
Log in

Study on the radiofrequency transparency of partial-ring oval-shaped prototype PET inserts in a 3 T clinical MRI system

  • Research Article
  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

The purpose of this study is to evaluate the RF field responses of partial-ring RF-shielded oval-shaped positron emission tomography (PET) inserts that are used in combination with an MRI body RF coil. Partial-ring PET insert is particularly suitable for interventional investigation (e.g., trimodal PET/MRI/ultrasound imaging) and intraoperative (e.g., robotic surgery) PET/MRI studies. In this study, we used electrically floating Faraday RF shield cages to construct different partial-ring configurations of oval and cylindrical PET inserts and performed experiments on the RF field, spin echo and gradient echo images for a homogeneous phantom in a 3 T clinical MRI system. For each geometry, partial-ring configurations were studied by removing an opposing pair or a single shield cage from different positions of the PET ring. Compared to the MRI-only case, reduction in mean RF homogeneity, flip angle, and SNR for the detector opening in the first and third quadrants was approximately 13%, 15%, and 43%, respectively, whereas the values were 8%, 23%, and 48%, respectively, for the detector openings in the second and fourth quadrants. The RF field distribution also varied for different partial-ring configurations. It can be concluded that the field penetration was high for the detector openings in the first and third quadrants of both the inserts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ishi S, et al. Optimized workflow and imaging protocols for whole-body oncologic PET/MRI. Jpn J Radiol. 2016;34(11):754–62.

    Article  Google Scholar 

  2. Catana C, et al. PET/MRI for neurologic applications. J Nucl Med. 2012;53:1916–25.

    Article  PubMed  Google Scholar 

  3. Werner P, et al. Current status and future role of brain PET/MRI in clinical and research settings. Eur J Nucl Med Mol Imaging. 2015;42:512–26.

    Article  CAS  PubMed  Google Scholar 

  4. Bashir U, et al. PET/MRI in oncological imaging: state of the art. Diagnostics (Basel). 2015;5:333–57.

    Article  CAS  PubMed  Google Scholar 

  5. Fraum TJ, Fowler KJ, McConathy J. PET/MRI: emerging clinical applications in oncology. Academic Radiol. 2015;23:220–36.

    Article  Google Scholar 

  6. Jadvar H, Colletti PM. Competitive advantages of PET/MRI. Eur J Radiol. 2014;83:84–94.

    Article  PubMed  Google Scholar 

  7. Nensa F, et al. Clinical applications of PET/MRI: current status and future perspectives. Diagn Interv Radiol. 2014;20:438–47.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Iagaru A, et al. Simultaneous whole-body time-of-flight 18F-FDG PET/MRI: a pilot study comparing SUVmax with PET/CT and assessment of MR image quality. Clin Nucl Med. 2015;40:1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shen G, et al. Diagnostic performance of whole-body PET/MRI for detecting malignancies in cancer patients: a meta-analysis. PLoS ONE. 2016;11:e0154497.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Schmand M, et al. BrainPET: First human tomograph for simultaneous (functional) PET and MR imaging. J Nucl Med. 2007;48(Suppl. 2):45P.

    Google Scholar 

  11. Kolb A, et al. Technical performance evaluation of a human brain PET/MRI system. Eur Radiol. 2012;22:1776–88.

    Article  PubMed  Google Scholar 

  12. Kang J, et al. A feasibility study of photosensor charge signal transmission to preamplifier using long cable for development of hybrid PET-MRI. Med Phys. 2010;42:5655–64.

    Article  Google Scholar 

  13. González AJ, et al. The MINDView brain PET detector, feasibility study based on SiPM arrays. Nucl Instr Meth Phys Res A. 2016;818:82–90.

    Article  ADS  Google Scholar 

  14. Akram MSH, et al. MRI compatibility study of an integrated PET/RF-coil prototype system at 3 T. J Mag Reson. 2017;283:62–70.

    Article  ADS  CAS  Google Scholar 

  15. Lee BJ, et al. MR performance in the presence of a radio frequency-penetrable positron emission tomography (PET) insert for simultaneous PET/MRI. IEEE Trans Med Imag. 2018;37:2060–9.

    Article  Google Scholar 

  16. Olcott P, et al. Prototype positron emission tomography insert with electro-optical signal transmission for simultaneous operation with MRI. Phys Med Biol. 2015;60:3459–78.

    Article  PubMed  Google Scholar 

  17. Grant AM, et al. Simultaneous PET/MR imaging with a radio frequency-penetrable PET insert. Med Phys. 2016;44:112–20.

    Article  Google Scholar 

  18. Akram MSH. A prototype oval PET insert for MRI systems targeted for body imaging. 2017 Report on PET Imaging Physics Research, National institutes for quantum science and technology (QST), Japan. Website: https://www.nirs.qst.go.jp/usr/medical-imaging/ja/study/pdf/QST_R_7.pdf

  19. Akram MSH, et al. Study on the radiofrequency transparency of electrically floating and ground PET inserts in a 3T clinical MRI system. Med Phys. 2022;49:2965–78.

    Article  CAS  PubMed  Google Scholar 

  20. Vaska P, Cao T. The state of instrumentation for combined positron emission tomography and magnetic resonance imaging. Semin Nucl Med. 2013;43:11–8.

    Article  PubMed  Google Scholar 

  21. Vandenberghe S, Marsden PK. PET-MRI: a review of challenges and solutions in the development of integrated multimodality imaging. Phys Med Biol. 2015;60:R115–54.

    Article  ADS  PubMed  Google Scholar 

  22. Shimizu K et al. Multi-pixel photon counter module for MRI compatible application. IEEE NSS/MIC M3CP-85. 2015.

  23. Leifer MC. Resonant modes of the birdcage coil. J Magn Reson. 1997;124:51–60.

    Article  ADS  CAS  Google Scholar 

  24. Collins CM, et al. A method for accurate calculation of B1 fields in three dimensions. Effects of shield geometry on field strength and homogeneity in the birdcage coil. J Magn Reson. 1997;125:233–41.

    Article  ADS  CAS  Google Scholar 

  25. Akamatsu G, et al. Design consideration of compact cardiac TOF-PET systems: a simulation study. Phys Med Biol. 2021;66:074002.

    Article  CAS  Google Scholar 

  26. Redpath TW. Signal-to-noise ratio in MRI. British J Radiol. 1998;71:704–7.

    Article  CAS  Google Scholar 

  27. Akram MSH, et al. Geometry optimization of electrically floating PET inserts for improved RF penetration for a 3T MRI system. Med Phys. 2018;45:4627–41.

    Article  PubMed  Google Scholar 

  28. Surti S, et al. Design study of an in situ PET scanner for use in proton beam therapy. Phys Med Biol. 2011;56:2667–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lopes PC, et al. First in situ TOF-PET study using digital photon counters for proton range verification. Phys Med Biol. 2016;61:6203–30.

    Article  CAS  Google Scholar 

  30. Torres-Espallardo I, et al. Evaluation of resistive-plate-chamber-based TOF-PET applied to in-beam particle therapy monitoring. Phys Med Biol. 2015;60:N187–208.

    Article  CAS  PubMed  Google Scholar 

  31. Crespo P, Shakirin G, Enghardt W. On the detector arrangement for in-beam PET for hadron therapy monitoring. Phys Med Biol. 2006;51:2143–63.

    Article  PubMed  Google Scholar 

  32. Ott OW. Electromagnetic compatibility engineering. New Jersey: Wiley; 2009.

    Book  Google Scholar 

  33. Stollberger R, et al. RF field mapping in vivo. Proc Intl Soc Mag Reson Med. 1988;P106:7170.

    Google Scholar 

  34. Insko EK, Bolinger L. Mapping of radiofrequency field. J Magn Reson Ser A. 1993;103:82–5.

    Article  ADS  CAS  Google Scholar 

  35. Jackson EF et al. Acceptance testing and quality assurance procedures for magnetic resonance imaging facilities. AAPM report no. 100, American Assoc Phys Med. 2010.

  36. Ibrahim TS, et al. B1 field homogeneity and SAR calculations for the birdcage coil. Phys Med Biol. 2001;46:609–19.

    Article  CAS  PubMed  Google Scholar 

  37. Vaughan JT, et al. 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images. Magn Reson Med. 2001;46:24–30.

    Article  CAS  PubMed  Google Scholar 

  38. Collins CM, Wang Z. Calculation of radiofrequency electromagnetic fields and their effects in MRI of human subjects. Magn Reson Med. 2011;65:1470–82.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang J, et al. Measurement and correction of transmitter and receiver induced nonuniformities in vivo. Magn Reson Med. 2005;53:408–17.

    Article  PubMed  Google Scholar 

  40. Watanabe H, Takaya N, Mitsumori F. Non-uniformity correction of human brain imaging at high field by RF field mapping of B1+ and B1-. J Magn Reson. 2011;212:426–30.

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Cunningham CH, Pauly JM, Nayak KS. Saturated double-angle method for rapid B1 mapping. Magn Reson Med. 2006;55:1326–33.

    Article  PubMed  Google Scholar 

  42. Redpath TW, Wiggins CJ. Estimating achievable signal-to-noise ratios of MRI transmit–receive coils from radiofrequency power measurements: applications in quality control. Phys Med Biol. 2000;45:217–27.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Shahadat Hossain Akram.

Ethics declarations

Conflict of interest

The authors have no relevant conflicts of interest to disclose.

Ethics approval

No approval of research ethics committees was required to accomplish the goals of this study because no human or animal study was conducted in this technical study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akram, M.S.H., Levin, C.S., Nishikido, F. et al. Study on the radiofrequency transparency of partial-ring oval-shaped prototype PET inserts in a 3 T clinical MRI system. Radiol Phys Technol 17, 60–70 (2024). https://doi.org/10.1007/s12194-023-00747-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-023-00747-w

Keywords

Navigation