Skip to main content
Log in

An efficient computational technique for time dependent semilinear parabolic problems involving two small parameters

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

The present work discusses a robust numerical scheme for singularly perturbed semilinear parabolic problems with two small parameters. Unlike many works in the literature, the manuscript contemplates a unified solution for these model problems whose solutions can have multiscale behavior depending upon the ratio of both perturbation parameters. Further, the robustness of the proposed scheme is tested over the problems having a large time lag as well. At first, the semilinearity is treated with the help of Newton’s linearization technique. Then, a first-order global accurate scheme is employed combining the implicit Euler scheme in time direction over a uniform mesh and the upwind scheme in spatial direction over two-layer rectifying meshes namely, the Shishkin mesh and the Bakhvalov-Shishkin mesh. The use of Bakhvalov-Shishkin mesh overrides the drawback of order deduction because of the logarithmic term in Shishkin mesh. Thomas algorithm is employed for calculation which computationally is more robust than the usual matrix inversion methods. The stability and consistency are discussed thoroughly. The truncation error and barrier function approach is used for the evaluation of error bounds. The analytical claims are proved through numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1

Similar content being viewed by others

Data availibility

The data sets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Agarwal, P., Kh.Abdullaev, O.: A nonlocal problem with integral gluing condition for a third-order loaded equation with parabolic-hyperbolic operator involving fractional derivatives, Math. Methods Appl. Sci. 43(6), 3716–3726 (2020)

  2. Brdar, M., Zarin, H.: A singularly perturbed problem with two parameters on a Bakhvalov-type mesh. J. Comput. Appl. Math. 292, 307–319 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chandru, M., Das, P., Ramos, H.: Numerical treatment of two-parameter singularly perturbed parabolic convection diffusion problems with non-smooth data. Math. Methods Appl. Sci. 41(14), 5359–5387 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Das, P., Natesan, S.: Richardson extrapolation method for singularly perturbed convection-diffusion problems on adaptively denerated mesh. Comput. Model. Eng. Sci. 90(6), 463–485 (2013). https://doi.org/10.3970/cmes.2013.090.463

    Article  MathSciNet  MATH  Google Scholar 

  5. Das, P., Natesan, S.: Optimal error estimate using mesh equidistribution technique for singularly perturbed system of reaction-diffusion boundary-value problems. Appl. Math. Comput. 249, 265–277 (2014). https://doi.org/10.1016/j.amc.2014.10.023

    Article  MathSciNet  MATH  Google Scholar 

  6. Das, P., Mehrmann, V.: Numerical solution of singularly perturbed convection-diffusion-reaction problems with two small parameters. BIT Numer. Math. 56, 51–76 (2016). https://doi.org/10.1007/s10543-015-0559-8

    Article  MathSciNet  MATH  Google Scholar 

  7. Das, P.: An a posteriori based convergence analysis for a nonlinear singularly perturbed system of delay differential equations on an adaptive mesh. Numer. Algor. 81, 465–487 (2019). https://doi.org/10.1007/s11075-018-0557-4

    Article  MathSciNet  MATH  Google Scholar 

  8. Das, P., Rana, S., Vigo-Aguiar, J.: Higher order accurate approximations on equidistributed meshes for boundary layer originated mixed type reaction diffusion systems with multiple scale nature. Appl. Numer. Math. 148, 79–97 (2020). https://doi.org/10.1016/j.apnum.2019.08.028

    Article  MathSciNet  MATH  Google Scholar 

  9. Das, P., Rana, S., Ramos, H.: On the approximate solutions of a class of fractional order nonlinear Volterra integro-differential initial value problems and boundary value problems of first kind and their convergence analysis. J. Comput. Appl. Math. 404, 55 (2022). https://doi.org/10.1016/j.cam.2020.113116

    Article  MathSciNet  MATH  Google Scholar 

  10. Ghosh, D., Khajanchi, S., Mangiarotti, S., Denis, F., Dana, S.K., Letellier, C.: How tumor growth can be influenced by delayed interactions between cancer cells and the microenvironment? Biosystems 158, 17–30 (2017). https://doi.org/10.1016/j.biosystems.2017.05.001

    Article  Google Scholar 

  11. Govindarao, L., Sahu, S.R., Mohapatra, J.: Uniformly convergent numerical method for singularly perturbed time delay parabolic problem with two small parameters. Iran. J. Sci. Technol. Trans. A. Sci. 43(5), 2373–2383 (2019). https://doi.org/10.1007/s40995-019-00697-2

    Article  MathSciNet  MATH  Google Scholar 

  12. Gupta, V., Kadalbajoo, M.K., Dubey, R.K.: A parameter-uniform higher order finite difference scheme for singularly perturbed time-dependent parabolic problem with two small parameters. Int. J. Comput. Math. 96(3), 474–499 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hamou, A.A., Hammouch, Z., Azroul, E., Agarwal, P.: Monotone iterative technique for solving finite difference systems of time fractional parabolic equations with initial/periodic conditions. Appl. Numer. Math. 181, 561–593 (2022). https://doi.org/10.1016/j.apnum.2022.04.022

    Article  MathSciNet  MATH  Google Scholar 

  14. Kumar, S., Kumar, M.: A robust numerical method for a two-parameter singularly perturbed time delay parabolic problem. Comput. Appl. Math. 39(3), 1–25 (2020)

    MathSciNet  MATH  Google Scholar 

  15. Kumar, K., Podila, P.C., Das, P., Ramos, H.: A graded mesh refinement approach for boundary layer originated singularly perturbed time-delayed parabolic convection diffusion problems. Math. Methods Appl. Sci. 44(16), 12332–12350 (2021). https://doi.org/10.1002/mma.7358

    Article  MathSciNet  MATH  Google Scholar 

  16. Ladyzhenskaia, O. A., Solonnikov, V. A., Ural’tseva, N. N.: Linear and Quasi-linear Equations of Parabolic type, American Mathematical Soceity 23 (1988)

  17. Misra, A.K., Singh, R.K., Tiwari, P.K., Khajanchi, S., Kang, Y.: Dynamics of algae blooming: effects of budget allocation and time delay. Nonlinear Dyn. 100, 1779–1807 (2020). https://doi.org/10.1007/s11071-020-05551-4

    Article  MATH  Google Scholar 

  18. Mohapatra, J., Priyadarshana, S., Reddy, N.R.: Uniformly convergent computational method for singularly perturbed time delayed parabolic differential-difference equations. Eng. Comput. 40(3), 694–717 (2023). https://doi.org/10.1108/EC-06-2022-0396

    Article  Google Scholar 

  19. O’Malley, R.E.: Parameter-uniform finite difference schemes for singularly perturbed parabolic diffusion-convection-reaction problems. J. Math. Mech. 16(10), 1143–1164 (1967)

    MathSciNet  Google Scholar 

  20. O’Malley, R.E.: Introduction to Singular Perturbations. Academic Press, New York (1974)

    MATH  Google Scholar 

  21. O’ Riordan, E., Pickett, M., Shishkin, G.: Parameter–uniform finite difference schemes for singularly perturbed parabolic diffusion–convection–reaction problems, Math. Comput. 75(255), 1135–1154 (2006)

  22. O’ Riordan, E., Pickett, M.: Numerical approximations to the scaled first derivatives of the solution to a two parameter singularly perturbed problem, J. Comput. Appl. Math. 347, 128–149 (2019)

  23. Pao, C.V.: Nonlinear Parabolic and Elliptic Equations, Plenum Press. N. Y. (1992). https://doi.org/10.1007/978-1-4615-3034-3

    Article  Google Scholar 

  24. Priyadarshana, S., Mohapatra, J., Govindrao, L.: An efficient uniformly convergent numerical scheme for singularly perturbed semilinear parabolic problems with large delay in time. J. Appl. Math. Comput. 64, 2617–2639 (2021). https://doi.org/10.1007/s12190-021-01633-7

    Article  MathSciNet  MATH  Google Scholar 

  25. Priyadarshana, S., Mohapatra, J., Pattanaik, S.R.: Parameter uniform optimal order numerical approximations for time-delayed parabolic convection diffusion problems involving two small parameters. Comput. Appl. Math. 41(233), 635 (2022). https://doi.org/10.1007/s40314-022-01928-w

    Article  MathSciNet  MATH  Google Scholar 

  26. Priyadarshana, S., Mohapatra, J.: Weighted variable based numerical scheme for time-lagged semilinear parabolic problems including small parameter. J. Appl. Math. Comput. 69, 2439–2463 (2023). https://doi.org/10.1007/s12190-023-01841-3

    Article  MathSciNet  MATH  Google Scholar 

  27. Priyadarshana, S., Mohapatra, J.: An efficient numerical approximation for mixed singularly perturbed parabolic problems involving large time-lag. Indian J. Pure Appl. Math. (2023). https://doi.org/10.1007/s13226-023-00445-8

    Article  MATH  Google Scholar 

  28. Priyadarshana, S., Mohapatra, J., Pattanaik, S.R.: A second order fractional step hybrid numerical algorithm for time delayed singularly perturbed 2D convection-diffusion problems. Appl. Numer. Math. 189, 107–129 (2023). https://doi.org/10.1016/j.apnum.2023.04.002

    Article  MathSciNet  MATH  Google Scholar 

  29. Priyadarshana, S., Mohapatra, J., Pattanaik, S.R.: An improved time accurate numerical estimation for singularly perturbed semilinear parabolic differential equations with small space shifts and a large time lag. Math. Comput. Simul. (2023). https://doi.org/10.1016/j.matcom.2023.07.009

    Article  MathSciNet  MATH  Google Scholar 

  30. Rai, R.K., Khajanchi, S., Tiwari, P.K., Venturino, E., Misra, A.K.: Impact of social media advertisements on the transmission dynamics of COVID-19 pandemic in India. J. Appl. Math. Comput. 68, 19–44 (2022). https://doi.org/10.1007/s12190-021-01507-y

    Article  MathSciNet  MATH  Google Scholar 

  31. Roos, H.G., Uzelac, Z.: The SDFEM for a convection-diffusion problem with two small parameters. Comput. Methods Appl. Math. 3(3), 443–458 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Roos, H.G., Teofanov, L., Uzelac, Z.: Graded meshes for higher order FEM. J. Comput. Math. 5, 1–16 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sahu, S.R., Mohapatra, J.: Numerical investigation of time delay parabolic differential equation involving two small parameters. Eng. Comput. 38(6), 2882–2899 (2021)

    Article  Google Scholar 

  34. Saini, S., Das, P., Kumar, S.: Computational cost reduction for coupled system of multiple scale reaction diffusion problems with mixed type boundary conditions having boundary layers, Rev. Real Acad. Cienc. Exactas Fis. Nat. - A: Mat. 117(66), (2023) https://doi.org/10.1007/s13398-023-01397-8

  35. Sardar, M., Khajanchi, S., Biswas, S., Abdelwahab, S.F., Nisar, K.S.: Exploring the dynamics of a tumor-immune interplay with time delay. Alex. Eng. J. 60(5), 4875–4888 (2021). https://doi.org/10.1016/j.aej.2021.03.041

    Article  Google Scholar 

  36. Schlichting, H.: Boundary Layer Theory, 7th edn. McGraw-Hill, New York (1979)

    MATH  Google Scholar 

  37. Shakti, D., Mohapatra, J., Das, P., Vigo-Aguiar, J.: A moving mesh refinement based optimal accurate uniformly convergent computational method for a parabolic system of boundary layer originated reaction–diffusion problems with arbitrary small diffusion terms, J. Comput. Appl. Math. 404, (2022) https://doi.org/10.1016/j.cam.2020.113167

  38. Shams, M., Kausar, N., Agarwal, P., Momani, S., Asif Shah, M.: Highly efficient numerical scheme for solving fuzzy system of linear and non-linear equations with application in differential equations. Appl. Math. Sci. Eng. 30(1), 777–810 (2022). https://doi.org/10.1080/27690911.2022.2147165

    Article  MathSciNet  Google Scholar 

  39. Shiromani, R., Shanthi, V., Das, P.: A higher order hybrid-numerical approximation for a class of singularly perturbed two-dimensional convection-diffusion elliptic problem with non-smooth convection and source terms. Comput. Math. with Appl. 142, 9–30 (2023). https://doi.org/10.1016/j.camwa.2023.04.004

    Article  MathSciNet  MATH  Google Scholar 

  40. Stynes, M., Tobiska, L.: A finite difference analysis of a streamline diffusion method on a Shishkin mesh. Numer. Algorithms. 18(3), 337–360 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  41. Tiwari, P.K., Rai, R. K., Khajanchi, S., Gupta, R. K., Misra, A.K.: Dynamics of coronavirus pandemic: effects of community awareness and global information campaigns, Eur. Phys. J. Plus. 136(994), (2021) https://doi.org/10.1140/epjp/s13360-021-01997-6

  42. Yu-Cheng, S., Quan, C.: The numerical solution of a singularly perturbed problem for semilinear parabolic differential equation. Appl. Math. Mech. 12(11), 1047–1056 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author Ms. S. Priyadarshana conveys her profound gratitude to the Department of Science and Technology, Govt. of India for providing INSPIRE fellowship (IF 180938).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Mohapatra.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflicts of interest.

Ethical approval

N/A

Informed consent

On behalf of the authors, Dr. Jugal Mohapatra shall be communicating the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyadarshana, S., Mohapatra, J. An efficient computational technique for time dependent semilinear parabolic problems involving two small parameters. J. Appl. Math. Comput. 69, 3721–3754 (2023). https://doi.org/10.1007/s12190-023-01900-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-023-01900-9

Keywords

Mathematics Subject Classification

Navigation