Skip to main content
Log in

A partially inexact generalized primal-dual hybrid gradient method for saddle point problems with bilinear couplings

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

One of the most popular algorithms for saddle point problems is the so-named primal-dual hybrid gradient method, which have been received much considerable attention in the literature. Generally speaking, solving the primal and dual subproblems dominates the main computational cost of those primal-dual type methods. In this paper, we propose a partially inexact generalized primal-dual hybrid gradient method for saddle point problems with bilinear couplings, where the dual subproblem is solved approximately with a relative error strategy. Our proposed algorithm consists of two stages, where the first stage yields a predictor by solving the primal and dual subproblems, and the second procedure makes a correction on the predictor via a simple scheme. It is noteworthy that the underlying extrapolation parameter can be relaxed in a larger range, which allows us to have more choices than a fixed setting. Theoretically, we establish some convergence properties of the proposed algorithm, including the global convergence, the sub-linear convergence rate and the Q-linear convergence rate. Finally, some preliminary computational results demonstrate that our proposed algorithm works well on the fused Lasso problem with synthetic datasets and a pixel-constrained image restoration model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Beck, A., Teboulle, M.: A fast iterative shrinkage\(-\)thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cai, X., Han, D., Xu, L.: An improved first-order primal-dual algorithm with a new correction step. J. Global Optim. 5(7), 1419–1428 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chambolle, A., Pock, T.: On the ergodic convergence rates of a first-order primal-dual algorithm. Math. Program. Ser. A 159, 253–287 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chang, X., Yang, J.: A golden ratio primal-dual algorithm for structured convex optimization. J. Sci. Comput. 87(47), 1–26 (2021)

    MathSciNet  MATH  Google Scholar 

  6. Chen, P., Huang, J., Zhang, X.: A primal-dual fixed point algorithm for convex separable minimization with applications to image restoration. Inverse Probl. 29, 025011 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Condat, L.: A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms. J. Optim. Theory Appl. 158, 1015–1046 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Esser, E., Zhang, X., Chan, T.: A general framework for a class of first-order primal-dual algorithms for convex optimization in imaging sciences. SIAM J. Imaging Sci. 3, 1015–1046 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Facchinei, F., Pang, J.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. I and II. Springer Verlag, New York (2003)

    MATH  Google Scholar 

  10. Gu, G., He, B., Yuan, X.: Customized proximal point algorithms for linearly constrained convex minimization and saddle-point problems: a uniform approach. Comput. Optim. Appl. 59, 135–161 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Han, D., He, H., Yang, H., Yuan, X.: A customized Douglas–Rachford splitting algorithm for separable convex minimization with linear constraints. Numer. Math. 127, 167–200 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Han, D., Sun, D., Zhang, L.: Linear rate convergence of the alternating direction method of multipliers for convex composite programming. Math. Oper. Res. 43(2), 622–637 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. He, B., Ma, F., Yuan, X.: An algorithmic framework of generalized primal-dual hybrid gradient methods for saddle point problems. J Math. Imaging Vis. 58(2), 279–293 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. He, B., You, Y., Yuan, X.: On the convergence of primal-dual hybrid gradient algorithm. SIAM J. Imaging Sci. 7(4), 2526–2537 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. He, B., Yuan, X.: Convergence analysis of primal-dual algorithms for a saddle-point problem: From contraction perspective. SIAM J. Imaging Sci. 5, 119–149 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. He, H., Desai, J., Wang, K.: A primal-dual prediction-correction algorithm for saddle point optimization. J. Global Optim. 66(3), 573–583 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. He, H., Han, D., Li, Z.: Some projection methods with the BB step sizes for variational inequalities. J. Comput. Appl. Math. 236, 2590–2604 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jiang, F., Cai, X., Wu, Z., Han, D.: Approximate first-order primal-dual algorithms for saddle point problems. Math. Comput. 90(329), 1227–1262 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jiang, F., Cai, X., Wu, Z., Zhang, H.: A first-order inexact primal-dual algorithm for a class of convex-concave saddle point problems. Numer. Algor. 88, 1109–1136 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Malitsky, Y., Pock, T.: A first-order primal-dual algorithm with linesearch. SIAM J. Optim. 28(1), 411–432 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course. Kluwer, Boston (2003)

    MATH  Google Scholar 

  22. Rasch, J., Chambolle, A.: Inexact first-order primal-dual algorithms. Comput. Optim. Appl. 76, 381–430 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tian, W., Yuan, X.: Linearized primal-dual methods for linear inverse problems with total variation regularization and finite element discretization. Inverse Prob. 32, 115,011 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Valkonen, T.: First-order primal-dual methods for nonsmooth non-convex optimisation. In: Chen, K., Schönlieb, C.B., Tai, X.C., Younces, L. (eds.) Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging: Mathematical Imaging and Vision, pp. 1–42. Springer, Cham (2021)

    Google Scholar 

  25. Wang, K., He, H.: A double extrapolation primal-dual algorithm for saddle point problems. J. Sci. Comput. 85(30), 1–30 (2020)

    MathSciNet  MATH  Google Scholar 

  26. Wu, Z., Li, M.: General inexact primal-dual hybrid gradient methods for saddle-point problems and convergence analysis. Asia Pac. J. Oper. Res. 39, 2150044 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  27. Xie, J., Liao, A., Yang, X.: An inexact alternating direction method of multipliers with relative error criteria. Optim. Lett. 11, 583–596 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yan, M.: A new primal-dual algorithm for minimizing the sum of three functions with a linear operator. J. Sci. Comput. 76, 1698–1717 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yang, W., Han, D.: Linear convergence of the alternating direction method of multipliers for a class of convex optimization problems. SIAM J. Numer. Anal. 54(2), 625–640 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zheng, X., Ng, K.: Metric subregularity of piecewise linear multifunctions and applications to piecewise linear multiobjective optimization. SIAM J. Optim. 24(1), 154–174 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhu, M., Chan, T.: An efficient primal-dual hybrid gradient algorithm for total variation image restoration. CAM Reports 08-34, UCLA, Los Angeles, CA (2008)

Download references

Acknowledgements

The authors are grateful to the three anonymous referees for their valuable comments on the earlier versions of this paper. Also, the authors would like to thank Dr. Fan Jiang for kindly sharing their Matlab code of [18, 19], and thank Dr. Zhou Wei for his discussion on Theorem 2.1. K. Wang was supported by National Natural Science Foundation of China (NSFC) at Grant No. 11901294 and Natural Science Foundation of Jiangsu Province at Grant No. BK20190429. H. He was supported in part by NSFC at Grant No. 11771113 and Ningbo Natural Science Foundation (Project ID: 2023J014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjin He.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Yu, J. & He, H. A partially inexact generalized primal-dual hybrid gradient method for saddle point problems with bilinear couplings. J. Appl. Math. Comput. 69, 3693–3719 (2023). https://doi.org/10.1007/s12190-023-01899-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-023-01899-z

Keywords

Mathematics Subject Classification

Navigation