Skip to main content
Log in

Strong resonance bifurcations for a discrete-time prey–predator model

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

The aim of this paper is to introduce a two-dimensional discrete-time prey–predator, identify its fixed points, as well as investigate one- and two-parameter bifurcations. Numerical normal forms are used in bifurcation analysis. For this model, the Neimark-Sacker, period doubling and strong resonance bifurcations are observed. Based on the critical coefficients, the bifurcation scenarios can be identified. Based on numerical continuation methods, we use the MATLAB package MatContM to verify the analytical results and observe complex dynamics up to 16- iterate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zhu, Y.L., Zhou, W., Chu, T., Elsadany, A.A.: Complex dynamical behavior and numerical simulation of a Cournot-Bertrand duopoly game with heterogeneous players. Commun. Nonlinear Sci. Numer. Simul. 101, 105898 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  2. Atabaigi, A., Akrami, M.H.: Dynamics and bifurcations of a host-arasite model. Int. J. Biomath. 10(06), 1750089 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Li, B., Liang, H.J., Shi, L., He, Q.Z.: Complex dynamics of Kopel model with nonsymmetric response between oligopolists. Chaos Solitons Fractals 156, 111860 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  4. Din, Q.: Dynamics and chaos control for a novel model incorporating plant quality index and larch budmoth interaction. Chaos Solitons Fractals 153, 111595 (2021)

    Article  MathSciNet  Google Scholar 

  5. Jiang, X.W., Chen, X., Huang, T., Yan, H.: Bifurcation and control for a predator-prey system with two delays. IEEE Trans. Circuits Syst. II Express Briefs 68(1), 376–380 (2021)

    Google Scholar 

  6. Li, H., Zhou, W., Elsadany, A.A., Tong, C.: Stability, multi-stability and instability in Cournot duopoly game with knowledge spillover effects and relative profit maximization. Chaos Solitons Fractals 146, 1100936 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Govaerts, W., Kuznetsov, Y.A., Meijer, H.G.: Numerical methods for two-parameter local bifurcation analysis of maps. SIAM J. Sci. Comput. 29(6), 2644–2667 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ghaziani, R.K., Govaerts, W., Sonck, C.: Resonance and bifurcation in a discrete-time predator-prey system with Holling functional response. Nonlinear Anal. Real World Appl. 13(3), 1451–1465 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheng, L.F., Cao, H.J., Zhang, L.T.: Two-parameter bifurcation analysis of an aircraft nose landing gear model. Nonlinear Dyn. 103, 367–381 (2021)

    Article  Google Scholar 

  10. Eskandari, Z., Alidousti, J., Avazzadeh, Z., Machado, J.T.: Dynamics and bifurcations of a discrete-time prey-predator model with Allee effect on the prey population. Ecol. Complex. 48, 100962 (2021)

    Article  Google Scholar 

  11. Eskandari, Z., Alidousti, J., Ghaziani, R.K.: Codimension-one and-two bifurcations of a three-dimensional discrete game model. Int. J. Bifurc. Chaos 31(02), 2150023 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, B., Liang, H.J., He, Q.Z.: Multiple and generic bifurcation analysis of a discrete Hindmarsh-Rose model. Chaos Solitons Fractals 146, 110856 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lotka, A.J.: Elements of Physical Biology. Williams & Wilkins, Ambler (1925)

    MATH  Google Scholar 

  14. Lotka, A.J.: Fluctuations in the abundance of a species considered mathematically. Nature 119(2983), 12–12 (1927)

    Article  Google Scholar 

  15. Kumar, V., Kumari, N.: Stability and bifurcation analysis of fractional-order delayed prey-predator system and the effect of diffusion. Int. J. Bifurc. Chaos 32(1), 2250002 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  16. AlSharawi, Z., Pal, N., Chattopadhyay, J.: The role of vigilance on a discrete-time predator-pery model. Discret. Contin. Dyn. Syst. Ser. B (2022). https://doi.org/10.3934/dcdsb.2022017

    Article  MATH  Google Scholar 

  17. Zou, X.L., Lv, J.L., Wu, Y.P.: A note on a stochastic Holling-II predator-prey model with a prey refuge. J. Franklin Inst. 357(7), 4486–4502 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jiang, Z.C., Zhao, Y., Bai, X.L., Zhang, Z.X.: Bifurcation and control of a planktonic ecological system with double delays by delayed feedback control. J. Franklin Inst. 358(7), 3609–3632 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Arsie, A., Kottegoda, C., Shan, C.H.: A predator-prey system with generalized Holling type IV functional response and Allee effects in prey. J. Differ. Equ. 309, 704–740 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mu, Y., Lo, W.C.: Bifurcation analysis of a competitive system with general toxic production and delayed toxic effects. J. Franklin Inst. (2022). https://doi.org/10.1016/j.jfranklin.2022.05.019

    Article  MathSciNet  MATH  Google Scholar 

  21. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, vol. 112. Springer, Berlin (2013)

    Google Scholar 

  22. Kuznetsov, Y.A., Meijer, H.G.: Numerical normal forms for codim 2 bifurcations of fixed points with at most two critical eigenvalues. SIAM J. Sci. Comput. 26(6), 1932–1954 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Govaerts, W., Ghaziach, R.K., Kuznetsov, Y.A., Meijer, H.G.: Numerical methods for two-parameter local bifurcation analysis of maps. SIAM J. Sci. Comput. 29(6), 2644–2667 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kuznetsov, Y.A., Meijer, H.G.: Numerical Bifurcation Analysis of Maps: From Theory to Software. Cambridge University Press, Cambridge (2019)

    Book  MATH  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (Grant Nos. 11626029), Natural Science Foundation of Anhui Province of China (Grant Nos. 2008085QA09, 1908085MG232) and Scientific Research Foundation of Education Department of Anhui Province of China (Grant No. KJ2021A0482).

Author information

Authors and Affiliations

Authors

Contributions

ZE: Methodology, Conceptualization, Software, Formal analysis, Writing—original draft. ZA: Investigation, Validation, Software, Formal analysis, Writing—original draft. BL: Writing—review & editing, Visualization, Investigation.

Corresponding author

Correspondence to Bo Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests regarding the work reported in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Eskandari, Z. & Avazzadeh, Z. Strong resonance bifurcations for a discrete-time prey–predator model. J. Appl. Math. Comput. 69, 2421–2438 (2023). https://doi.org/10.1007/s12190-023-01842-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-023-01842-2

Keywords

Mathematics Subject Classification

Navigation