Skip to main content
Log in

The supercloseness property of the Stoke projection for the transient Navier–Stokes equations and global superconvergence analysis

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we derive the supercloseness properties and global superconvergence results for the implicit Euler scheme of the transient Navier–Stokes equations. Using a prior estimate of finite element solutions, the properties of the Stokes projection and Stokes operator, the derivative transforming skill and the \(H^{-1}\)-norm estimate, we deduce the supercloseness properties of the Stokes projection for the velocity in \(L^\infty (H^1)\)-norm and pressure in \(L^\infty (L^2)\)-norm. Then the supercloseness properties of the interpolation operators are obtained for two pairs of rectangular element: the bilinear-constant element and the Bernadi–Raugel element. Finally, by the interpolation postprocessing technique, we obtain the global superconvergent results. Compared with previous results, no time step restriction is required in the analysis, and moreover, the supercloseness analysis is based on the Stokes projection, which makes the proof more concise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Temam, R.: Navier–Stokes Equations. Theory and Numerical Analysis. North-Holland, New York (1977)

    MATH  Google Scholar 

  2. Girault, V., Raviart, P.: Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  3. John, V.: Finite Element Methods for Incompressible Flow Problems. Springer, Heidelberg (2016)

    Book  MATH  Google Scholar 

  4. Lin, Q., Lin, J.: Finite Element Methods: Accuracy and Improvement. Science Press, Beijing (2006)

    Google Scholar 

  5. Pan, J.: Global superconvergence for the bilinear-constant scheme for the Stokes problem. SIAM J. Numer. Anal. 34(6), 2424–2430 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hu, J., Shi, Z.: Constrained quadrilateral nonconforming rotated \({Q}_1\) element. J. Comput. Math. 23(5), 561–586 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Mao, S., Chen, S.: Convergence and superconvergence of a nonconforming finite element method for the Stokes problem. J. Numer. Math. J4(1), 16–38 (2006)

    MathSciNet  Google Scholar 

  8. Liu, H., Yan, N.: Superconvergence analysis of the nonconforming quadrilateral linear-constant scheme for Stokes equations. Adv. Comput. Math. 29, 375–392 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhang, T., Tang, L.: Superconvergence of the stable \({P}_1\)-\({P}_1\) finite element pair for Stokes problem. Calcolo 53, 35–49 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eichel, H., Tobiska, L., Xie, H.: Supercloseness and superconvergence of stabilized low-order finite element discretizations of the Stokes problem. Math. Comput. 80(274), 697–722 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Shi, D., Yu, Z.: Superclose and superconvergence of finite element discretizations for the Stokes equations with damping. Appl. Math. Comput. 219, 7693–7698 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Ren, J., Ma, Y.: A superconvergent nonconforming mixed finite element method for the Navier-Stokes equations. Numer. Methods Partial. Differ. Eq. 32, 646–660 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Shi, D., Li, M., Li, Z.: A nonconforming finite element method for the stationary Smagorinsky model. Appl. Math. Comput. 353, 308–319 (2019)

    MathSciNet  MATH  Google Scholar 

  14. Yang, H.: A novel approach of superconvergence analysis of the bilinear-constant scheme for time-dependent Stokes equations. Appl. Numer. Math. 173, 180–192 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  15. Xu, C., Shi, D., Liao, X.: Low order nonconforming mixed finite element method for nonstationary incompressible Navier-Stokes equations. Appl. Math. Mech. 37(8), 1095–1112 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yang, H., Shi, D., Liu, Q.: Superconvergence analysis of low order nonconforming mixed finite element methods for time-dependent Navier-Stokes equations. J. Comput. Math. 39(1), 63 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, Z., Li, M., Shi, D.: Unconditional convergence and superconvergence analysis for the transient Stokes equations with damping. Appl. Math. Comput. 389, 125572 (2021)

    MathSciNet  MATH  Google Scholar 

  18. Liu, Q., Shi, D.: Superconvergent analysis of a nonconforming mixed finite element method for time-dependent damped Navier-Stokes equations. Comput. Appl. Math. 40, 1–17 (2021)

    MathSciNet  MATH  Google Scholar 

  19. Shi, D., Liu, Q.: Superconvergent analysis of a nonconforming mixed finite element method for non-stationary conduction-convection problem. Comput. Math. Appl. 79, 230–243 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, Q., Shi, D.: New error analysis of a second order BDF scheme for unsteady natural convection problem. Appl. Numer. Math. 154, 243–259 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ayuso, B., García-Archilla, B., Novo, J.: The postprocessed mixed finite-element method for the Navier-Stokes equations. SIAM J. Numer. Anal. 43(3), 1091–1111 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 2, 275–311 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  23. Heywood, J.G., Rannacher, R.: Finite-element approximation of the nonstationary Navier-Stokes problem. Part IV: Error analysis for second-order time discretization. SIAM J. Numer. Anal. 2, 353–384 (1990)

    Article  MATH  Google Scholar 

  24. de Frutos, J., García-Archilla, B., John, V., Novo, J.: Analysis of the grad-div stabilization for the time-dependent Navier-Stokes equations with inf-sup stable finite elements. Adv. Comput. Math. 44(1), 195–225 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, M., Li, Z., Shi, D.: Unconditional optimal error estimates for the transient Navier-Stokes equations with damping. Adv. Appl. Math. Mech. 14(1), 248–274 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  26. He, Y., Huang, P., Feng, X.: \({H}^2\)-stability of the first order fully discrete schemes for the time-dependent Navier-Stokes equations. J. Sci. Comput. 62, 230–264 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hill, A.T., Süli, E.: Approximation of the global attractor for the incompressible Navier-Stokes equations. IMA J. Numer. Anal. 20(4), 633–667 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. He, Y.: Stability and error analysis for a spectral Galerkin method for the Navier-Stokes equations with \({H}^2\) or \({H}^1\) initial data. Numer. Methods Partial. Differ. Eq. 21(5), 875–904 (2005)

    Article  MATH  Google Scholar 

  29. Bernardi, C., Raugel, G.: Analysis of some finite elements for the Stokes problem. Math. Comput. 44(169), 71–79 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  30. Boffi, D., Brezzi, F., Fortin, M., et al.: Mixed Finite Element Methods and Applications. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work was sponsored by Natural Science Foundation of Henan (222300420143), the Innovative Funds Plan of Henan University of Technology (2021ZKCJ11), and Fundamental Research Funds for the Henan Provincial Colleges and Universities (22A130003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liuchao Xiao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Xiao, L. & Li, Z. The supercloseness property of the Stoke projection for the transient Navier–Stokes equations and global superconvergence analysis. J. Appl. Math. Comput. 69, 2041–2057 (2023). https://doi.org/10.1007/s12190-022-01824-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-022-01824-w

Keywords

Mathamatics Subject Classification

Navigation