Skip to main content
Log in

A ratio-dependent predator-prey model with Allee effect and disease in prey

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we have developed a ratio-dependent predator-prey model with disease in prey. The total population is subdivided into three sub-classes, namely susceptible prey, infected prey and predator population. A susceptible prey survival threshold has been incorporated for Allee effect in the model. We have studied the positivity and boundedness of the solutions of the system and analyzed the existence of various equilibrium points and stability of the system at those equilibrium points for both strong and weak Allee effect. It is observed that a Hopf bifurcation may occur about the interior equilibrium taking susceptible prey survival threshold for Allee effect as bifurcation parameter. Our analytical findings are illustrated through computer simulation using MATLAB, which show the reliability of our model from the eco-epidemiological point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anderson, R.M., May, R.M.: The invasion persistence and spread of infectious diseases within animal and plant communities. Phil. Trans. R. Sot. Lond. B 314, 533–570 (1986)

    Article  Google Scholar 

  2. Arditi, R., Ginzburg, L.R.: Coupling in predator-prey dynamics: ratio-dependence. J. Theo. bio. 139, 311–326 (1989)

    Article  Google Scholar 

  3. Arditi, R., Saiah, H.: Empirical evidence of the role of heterogeneity in ratio-dependent consumption. Ecology 73, 1544–1551 (1992)

    Article  Google Scholar 

  4. Beretta, E., Capasso, V.: On the general structure of epidemic systems: global asymptotic stability. Comput. Math. Appl. 12A, 677–694 (1986)

    Article  MathSciNet  Google Scholar 

  5. Butler, G.J., Freedman, H.I., Waltman, P.: Uniformly persistent systems. Proc. Am. Math. Soc. 96, 425–429 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  6. Castillo-Chevez, C., Feng, Z.: Global stability of an age-structure model for TB and its applications to optimal vaccination strategies. Math. Biosci. 151, 135–154 (1998)

    Article  Google Scholar 

  7. Castillo-Chevez, C., Song, B.: Dynamical models of tuberculosis and their applications. Math. Biosci. Eng. 1, 361–404 (2004)

    Article  MathSciNet  Google Scholar 

  8. Celik, C., Duman, O.: Allee effect in a discrete-time predator-prey system. Chaos. Solitons. Fractals 40, 1956–1962 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chen, F., Chen, L., Xie, X.: On a Leslie-Gower predator-prey model incorporating a prey refuge. Nonlin. Anal. Real World Appl. 10, 2905–2908 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chen, H., Sun, J.: Global stability of delay multigroup endemic models with group mixing and nonlinear incidence rates. Appl. Math. Comput. 218, 4391–4400 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Enatsu, Y., Messina, E., Muroya, Y., Nakata, Y., Russo, E., Vecchio, A.: Stability analysis of delayed SIR epidemic models with a class of nonlinear incidence rates. Appl. Math. Comput. 218, 5327–5336 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Freedman, H.I.: Deterministic Mathematical Models in Population Ecology. Marcel Dekker, New York (1980)

    MATH  Google Scholar 

  13. Freedman, H.I., Waltman, P.: Mathematical analysis of some three-species food chain models. Math. Biosci. 33, 257–276 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  14. Freedman, H.I., Waltman, P.: Persistence in a model of three competitive populations. Math. BIosci. 73, 89–101 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  15. Freedman, H.I., Waltman, P.: Persistence in a model of three interacting predator-prey populations. Math. Biosci. 68, 213–231 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hadeler, K.P., Freedman, H.I.: Predator-prey populations with parasitic infection. J. Math. Biol. 27, 609–631 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hale, J.K.: Theory of Functional Differential Equations. Springer, New York (1977)

    Book  MATH  Google Scholar 

  18. Haque, A.: A predator-prey model with disease in the pradator species only. Nonlin. Anal. Real World Appl. 11(010), 2224–2236 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Haque, M., Greenhalgh, D.: When Predato avoids infected Prey: a model based theoretical studies. IMA J. Math. Med. Biol. 27, 75–94 (2009)

    Article  MathSciNet  Google Scholar 

  20. Haque, M., Sarwardi, S., Preston, S., Venturino, E.: Effect of delay in a Lotka-Volterra type Predator-Prey model with a transmission disease in the predator species. Math. Biosci. 234(1), 47–57 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. Haque, M., Venturino, E.: Modelling disease spreading in symbiotic communities. Wildlife Destruction, Conservation and biodiversity. Nova Science Publishers, New York (2009)

    Google Scholar 

  22. Haque, M., Zhen, J., Venturino, E.: Rich dynamics of Lotka-Volterra type Predator-Prey model system with viral disease in Prey species. Math. Methods Appl. Sci. 32, 875–898 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hethcote, H.: The mathematics of infectious diseases. SIAM Rev. 42, 599–653 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hethcote, H., Wang, W., Han, L., Ma, Z.: A predator-prey model with infected prey. Theo. Popul. Biol. 66, 259–268 (2004)

    Article  Google Scholar 

  25. Holling, C.S.: The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomol. Soc. Can. 45, 3–60 (1965)

    Google Scholar 

  26. Hsieh, Y.H., Hsiao, C.K.: Predator-Prey model with disease infection in both populations. Math. Med. Biol. 25, 247–266 (2008)

    Article  MATH  Google Scholar 

  27. Hsu, S.B., Hwang, T.W.: Hopf bifurcation analysis for a predator-prey system of Holling and Leslie type. Taiwan J. Math. 3, 35–53 (1999)

    MATH  MathSciNet  Google Scholar 

  28. Huang, Y., Chen, F., Zhong, L.: Stability analysis of a prey-predator model with Holling type II resopnse function incorporating a prey refuge. Appl. Math. Comput. 182, 672–683 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  29. Javidi, M., Nyamorady, N.: Allee effects in a predator-prey system with a saturated recovery function and harvesting. Int. J. Adv. Math. Sci. 1(2), 33–44 (2013)

    Google Scholar 

  30. Ji, C., Jiang, D., Shi, N.: Analysis of a predator-prey model with modified Leslie-Gower and Holling typeII schemes with stochastic perturbation. J. Math. Anal. Appl. 359, 482–498 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  31. Jia, J., Liu, J.: A food chain model with ratio-dependent functional response, impulsive perturbations and feedback controls. Br. J. Math. Comput. Sci. 2(3), 126–136 (2012)

    Article  Google Scholar 

  32. Ko, W., Ryu, K.: Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge. J. Differ. Equ. 231, 534–550 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Korobeinikov, A.: A Lyapunov function for Leslie-Gower predator-prey models. Appl. Math. Lett. 14, 697–699 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  34. Korobeinikov, A., Maini, P.K., Walker, W.J.: Estimation of effective vaccination rate: pertussis in New Zealand as a case study. J. Theor. Biol. 224, 269–275 (2003)

    Article  MathSciNet  Google Scholar 

  35. Korobeinikov, A., Maini, P.K.: A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Math. Biosci. Eng. 1, 57–60 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  36. Korobeinikov, A., Maini, P.K.: Nonlinear incidence and stability of infectious disease models. Math. Med. Biol. 22, 113–128 (2005)

    Article  MATH  Google Scholar 

  37. Kot, M.: Elements of Mathematical Ecology. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  38. Kuang, Y., Beretta, E.: Global qualitative analysis of a ratio-dependent predator-prey system. J. Math. Biol. 36, 389–406 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  39. Kuznetsov, Y., Rinaldi, S.: Remarks on food chain dynamics. Math. Biosci. 134, 1–33 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  40. Lai, X., Liu, S., Lin, R.: Rich dynamical behaviours for predator-prey model with weak Allee effect. Appl. Anal. 89, 1271–1292 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  41. Li, Y., Li, C.: Stability and Hopf bifurcation analysis on a delayed Leslie-Gower predator-prey system incorporating a prey refuge. Appl. Math. Comput. 219, 4576–4589 (2013)

    Article  MathSciNet  Google Scholar 

  42. Li, J., Yang, Y., Zhou, Y.: Global stability of an epidemic model with latent stage and vaccination. Nonlin. Anal. 12, 2163–2173 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  43. Liu, W.M., Levin, S.A., Iwasa, Y.: Influence of non-linear incidence rates upon the behaviour of SIRS epidemiological models. J. Math. Biol. 23, 187–204 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  44. Maiti, A., Pal, A.K., Samanta, G.P.: Effect of time delay on a food chain model. Appl. Math. Comput. 200, 189–203 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  45. Maiti, A., Pal, A.K., Samanta, G.P.: Usefulness of biocontrol of pests in tea: a mathematical model. Math. Model. Nat. Phenom. 3, 96–113 (2008)

    Article  MathSciNet  Google Scholar 

  46. Maiti, A., Samanta, G.P.: Complex dynamics of a food chain model with mixed selection of functional responses. Bull. Cal. Math. Soc. 97, 393–412 (2005)

    MATH  MathSciNet  Google Scholar 

  47. Murray, J.D.: Mathematical Biology. Springer, New York (1993)

    Book  MATH  Google Scholar 

  48. Pal, A.K., Samanta, G.P.: Stability analysis of an eco-epidemiological model incorporating a prey refuge. Nonlin. Anal. Model. Control 15(4), 473–491 (2010)

    MathSciNet  Google Scholar 

  49. Pal, P.J., Saha, T., Sen, M., Banerjee, M.: A delayed predator-prey model with strong Allee effect in prey population growth. Nonlin. Dyn. 68, 23–42 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  50. Pielou, E.C.: Mathematical Ecology. Wiley, New York (1977)

    Google Scholar 

  51. Rahman, MdS, Chakravarty, S.: A predator-prey model with disease in prey. Nonlin. Anal. Model. Cont. 18, 191–209 (2013)

    MATH  MathSciNet  Google Scholar 

  52. Ruan, S., Wang, W.: Dynamical behavior with non-linear incidence rate. J. Diff. Equ. 22, 135–163 (2003)

    Article  MathSciNet  Google Scholar 

  53. Samanta, G.P., Manna, D., Maiti, A.: Bioeconomic modelling of a three-species fishery with switching effect. Korean J. Comput. Appl. Math. 12(1–2), 219–231 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  54. Sharma, S., Samanta, G.P.: Analysis of an epidemic model with non-linear incidence and vaccination. Int. J. Ecol. Econ. Stat. 28(1), 104–129 (2013)

    MathSciNet  Google Scholar 

  55. Sharma, S., Samanta, G.P.: Dynamical behaviour of a two prey one predator system. Differ. Eqn. Dyn. Syst. (2013). doi:10.1007/s12591-012-0158-y

  56. Sharma, S., Samanta, G.P.: Dynamical behaviour of an HIV/AIDS epidemic model. Differ. Eqn. Dyn. Syst. (2013). doi:10.1007/s12591-013-0173-7

    Google Scholar 

  57. Shi, X.Y., Cui, J., Zhou, X.Y.: Stability and Hopf bifurcation analysis of an eco-epidemic model with a stage structure. Nonlin. Anal. 74, 1088–1106 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  58. Sun, C., Lin, Y., Han, M.: Stability and hopf bifurcation for an epidemic disease model with delay. Chaos Soliton Fract. 30, 204–216 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  59. Takeuchi, Y., Oshime, Y., Matsuda, H.: Persistence and periodic orbits of a three-competitor model with refuges. Math. Biosci. 108, 105–125 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  60. Tewa, J.J., Djeumen, V.Y., Bowong, S.: Predator-Prey model with Holling response function of type II and SIS infectious disease. Appl. Math. Model. 37, 4825–4841 (2013)

    Article  MathSciNet  Google Scholar 

  61. Venturino, E.: Epidemics in Predator-Prey models: disease in the Predators. IMA. J. Math. Appl. Med. Biol. 19, 285–205 (2002)

    Article  Google Scholar 

  62. Venturino, E.: Epidemics in predator-prey models: disease in the prey. In: Arino, O., Axelrod, D., Kimmel, M., Langlais, M. (eds.) Mathematical Population Dynamics: Analysis of Heterogeneity, Theory of Epidemics, vol. 1, pp. 381–393. Wuerz, Winnipeg (1995)

    Google Scholar 

  63. Venturino, E.: The influence of diseases on Lotka-Volterra systems. Rocky. Mt. J. Math. 24, 381–402 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  64. Wang, S., Ma, Z.: Analysis of an ecoepidemiological model with prey refuges. J. Appl. Math. (2012). doi:10.1155/2012/371685

  65. Wang, W., Zhu, Y., Cai, Y., Wang, W.: Dynamical complexity induced by Allee effect in a predator-prey model. Nonlin. Anal. Real World Appl. 16, 103–119 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  66. Xiao, Y.N., Chen, L.S.: A ratio-dependent predator-prey model with disease in the prey. Appl. Mth. Comput. 131, 397–414 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  67. Xiao, Y.N., Chen, L.S.: Analysis of a three species eco-epidemiological model. J. Math. Anal. Appl. 258(2), 733–754 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  68. Xiao, Y.N., Chen, L.S.: Modelling and analysis of a predator-prey model with disease in the prey. Math. Biosci. 171, 59–82 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  69. Xiao, D., Ruan, S.: Global analysis of an epidemic model with nonmonotone incidence rate. Math. Biosci. 208, 419–429 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  70. Xiao, D., Ruan, S.: Global dynamics of a ratio-dependent predator-prey system. J. Math. Bio. 43, 268–290 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  71. Xue, Y., Duan, X.: Dynamic analysis of an SIR epidemic model with nonlinear incidence rate and double delays. Int. J. Info. Syst. Sci. 7, 92–102 (2011)

    MathSciNet  Google Scholar 

  72. Yu, W., Cao, J.: Hopf bifurcation and stability of periodic solutions for Van der Pol equation with time delay. Nonlin. Anal. TMA 62, 141–165 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  73. Zhang, J.F., Li, W.T., Yan, X.P.: Hopf bifurcation and stability of periodic solutions in a delayed eco-epidemiological system. Appl. Math. Comput. 198, 865–876 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  74. Zhou, X., Cui, J.: Stability and Hopf bifurcation analysis of an eco-epidemiological model with delay. J. Frank. Inst. 347, 1654–1680 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  75. Zhou, X., Liu, Y., Wang, G.: The stability of predator-prey systems subject to the Allee effects. Theo. Popul. Biol. 67, 23–31 (2005)

    Article  MATH  Google Scholar 

  76. Zhou, X.Y., Shi, X.Y., Song, X.Y.: Analysis of a delay prey-predator model with disease in the prey species only. J. Korean Math. Soc. 46(4), 713–731 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the anonymous referees and the Editor-in-Chief (Chin-Hong Park, Ph.D) for their careful reading, valuable comments and helpful suggestions, which have helped them to improve the presentation of this work significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Samanta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Samanta, G.P. A ratio-dependent predator-prey model with Allee effect and disease in prey. J. Appl. Math. Comput. 47, 345–364 (2015). https://doi.org/10.1007/s12190-014-0779-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-014-0779-0

Keywords

Navigation