Skip to main content
Log in

A predictor-corrector algorithm for linear optimization based on a modified Newton direction

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

We present a predictor-corrector algorithm for linear optimization based on a modified Newton direction. In each main iteration, the algorithm operates two kinds of steps: a modified Newton step and a damped predictor step. The modified Newton step is generated from an equivalent reformulation of the centering equation from the system, which defines the central path, and move in the direction of a small neighborhood of the central path. While the damped predictor step is used to move in the direction of optimal solution and reduce the duality gap. The procedure is repeated until an ϵ-approximate solution is found. We derive the complexity for the algorithm, and obtain the best-known result for linear optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Andersen, E., Andersen, K.: The MOSEK interior point optimizer for linear programming: an implementation of the homogeneous algorithm. High Perform. Optim. 91(3), 197–232 (2000)

    Google Scholar 

  2. Cartis, C.: Some disadvantages of a Mehrotra-type primal-dual corrector interior point algorithm for linear programming. Appl. Numer. Math. 59(5), 1110–1119 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Karmarkar, N.: A new polynomial-time algorithm for linear programming. In: Proceedings of the Sixteenth Annual ACM Symposium on Theory of Computing, pp. 302–311. ACM, New York (1984)

    Chapter  Google Scholar 

  4. Lan, G., Monteiro, R., Tsuchiya, T.: A polynomial predictor-corrector trust-region algorithm for linear programming. SIAM J. Optim. 19, 1918–1946 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Megiddo, N.: Pathways to the optimal set in linear programming. In: Progress in Mathematical Programming: Interior Point and Related Methods, pp. 131–158 (1989)

    Google Scholar 

  6. Mehrotra, S.: On the implementation of a primal-dual interior point method. SIAM J. Optim. 2, 575–601 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Peng, J., Terlaky, T., Zhao, Y.: A predictor-corrector algorithm for linear optimization based on a specific self-regular proximity function. SIAM J. Optim. 15(4), 1105–1127 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Roos, C., Terlaky, T., Vial, J.: Theory and Algorithms for Linear Optimization: An Interior Point Approach. Wiley, New York (1997)

    MATH  Google Scholar 

  9. Salahi, M., Terlaky, T.: Mehrotra-type predictor-corrector algorithm revisited. Optim. Methods Softw. 23(2), 259–274 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Salahi, M., Peng, J., Terlaky, T.: On Mehrotra-type predictor-corrector algorithms. SIAM J. Optim. 18(4), 1377–1397 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sturm, J.: Using SeDuMi 1. 02, a Matlab toolbox for optimization over symmetric cones. Optim. Methods Softw. 11(1), 625–653 (1999)

    Article  MathSciNet  Google Scholar 

  12. Vanderbei, R.: Loqo: an interior point code for quadratic programming. Optim. Methods Softw. 11(1), 451–484 (1999)

    Article  MathSciNet  Google Scholar 

  13. Wright, S.: Primal-Dual Interior-Point Methods. Society of Industrial. Society for Industrial and Applied Mathematics, Philadelphia (1997)

    Book  Google Scholar 

  14. Ye, Y.: Interior Point Algorithms: Theory and Analysis. Wiley, New York (1997)

    Book  MATH  Google Scholar 

  15. Zhang, Y.: Solving large-scale linear programs by interior-point methods under the Matlab environment. Optim. Methods Softw. 10(1), 1–31 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang, Y.: User’s guide to LIPSOL: linear programming interior point solver v0. 4. Optim. Methods Softw. 11(1/4), 385–396 (1999)

    Article  MathSciNet  Google Scholar 

  17. Zhang, L., Xu, Y.: A full-newton step interior-point algorithm based on modified newton direction. Oper. Res. Lett. 39(5), 318–322 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhu, X., Peng, J., Terlaky, T., Zhang, G.: On implementing self-regular proximity based feasible IPMs. McMaster University Advanced Optimization Laboratory AdvOL-Report 3 (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinghong Xu.

Additional information

Xu’s research is supported by the Natural Science Foundation of Zhejiang Province No. Q12A010085. Zhang’s research is supported by the grant from National Natural Science Foundation of China No. 11171373.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Zhang, L. & Jin, Z. A predictor-corrector algorithm for linear optimization based on a modified Newton direction. J. Appl. Math. Comput. 40, 73–86 (2012). https://doi.org/10.1007/s12190-012-0553-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-012-0553-0

Keywords

Mathematics Subject Classification

Navigation