Skip to main content

Advertisement

Log in

First report of familial mixed phenotype acute leukemia: shared clinical characteristics, Philadelphia translocation, and germline variants

  • Case Report
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

While our understanding of the molecular basis of mixed phenotype acute leukemia (MPAL) has progressed over the decades, our knowledge is limited and the prognosis remains poor. Investigating cases of familial leukemia can provide insights into the role of genetic and environmental factors in leukemogenesis. Although familial cases and associated mutations have been identified in some leukemias, familial occurrence of MPAL has never been reported. Here, we report the first cases of MPAL in a family. A 68-year-old woman was diagnosed with MPAL and received haploidentical stem cell transplantation from her 44-year-old son. In four years, the son himself developed MPAL. Both cases exhibited similar characteristics such as biphenotypic leukemia with B/myeloid cell antigens, Philadelphia translocation (BCR-ABL1 mutation), and response to acute lymphoblastic leukemia-type chemotherapy. These similarities suggest the presence of hereditary factors contributing to the development of MPAL. Targeted sequencing identified shared germline variants in these cases; however, in silico analyses did not strongly support their pathogenicity. Intriguingly, when the son developed MPAL, the mother did not develop donor-derived leukemia and remained in remission. Our cases provide valuable insights to guide future research on familial MPAL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia. 2022;36:1703–19.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Maruffi M, Sposto R, Oberley MJ, Kysh L, Orgel E. Therapy for children and adults with mixed phenotype acute leukemia: a systematic review and meta-analysis. Leukemia. 2018;32:1515–28.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lazzarotto D, Tanasi I, Vitale A, Piccini M, Dargenio M, Giglio F, et al. Multicenter retrospective analysis of clinical outcome of adult patients with mixed-phenotype acute leukemia treated with acute myeloid leukemia-like or acute lymphoblastic leukemia-like chemotherapy and impact of allogeneic stem cell transplantation: a Campus ALL study. Ann Hematol. 2023;102:1099–109.

    Article  CAS  PubMed  Google Scholar 

  4. Matutes E, Pickl WF, Van’t Veer M, Morilla R, Swansbury J, Strobl H, et al. Mixed-phenotype acute leukemia: clinical and laboratory features and outcome in 100 patients defined according to the WHO 2008 classification. Blood. 2011;117:3163–71.

    Article  CAS  PubMed  Google Scholar 

  5. Rubnitz JE, Onciu M, Pounds S, Shurtleff S, Cao X, Raimondi SC, et al. Acute mixed lineage leukemia in children: the experience of St Jude Children’s Research Hospital. Blood. 2009;113:5083–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405.

    Article  CAS  PubMed  Google Scholar 

  7. Wiseman DH. Donor cell leukemia: a review. Biol Blood Marrow Transplant. 2011;17:771–89.

    Article  PubMed  Google Scholar 

  8. Wlodarski MW, Hirabayashi S, Pastor V, Starý J, Hasle H, Masetti R, et al. Prevalence, clinical characteristics, and prognosis of GATA2-related myelodysplastic syndromes in children and adolescents. Blood. 2016;127:1387–97.

    Article  CAS  PubMed  Google Scholar 

  9. Polprasert C, Schulze I, Sekeres MA, Makishima H, Przychodzen B, Hosono N, et al. Inherited and somatic defects in DDX41 in myeloid neoplasms. Cancer Cell. 2015;27:658–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang MY, Churpek JE, Keel SB, Walsh T, Lee MK, Loeb KR, et al. Germline ETV6 mutations in familial thrombocytopenia and hematologic malignancy. Nat Genet. 2015;47:180–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Noris P, Favier R, Alessi MC, Geddis AE, Kunishima S, Heller PG, et al. ANKRD26-related thrombocytopenia and myeloid malignancies. Blood. 2013;122:1987–9.

    Article  CAS  PubMed  Google Scholar 

  12. Sugiura I, Doki N, Hata T, Cho R, Ito T, Suehiro Y, et al. Dasatinib-based 2-step induction for adults with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood Adv. 2022;6:624–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ravandi F, O’Brien S, Thomas D, Faderl S, Jones D, Garris R, et al. First report of phase 2 study of dasatinib with hyper-CVAD for the frontline treatment of patients with Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia. Blood. 2010;116:2070–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46:310–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ng PC, Henikoff S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31:3812–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, Darbandi SF, Knowles D, et al. Predicting splicing from primary sequence with deep learning. Cell. 2019;176:535–48.

    Article  CAS  PubMed  Google Scholar 

  18. Zeng T, Li YI. Predicting RNA splicing from DNA sequence using Pangolin. Genome Biol. 2022;23:103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yan L, Ping N, Zhu M, Sun A, Xue Y, Ruan C, et al. Clinical, immunophenotypic, cytogenetic, and molecular genetic features in 117 adult patients with mixed-phenotype acute leukemia defined by WHO-2008 classification. Haematologica. 2012;97:1708–12.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shi R, Munker R. Survival of patients with mixed phenotype acute leukemias: a large population-based study. Leuk Res. 2015;39:606–16.

    Article  PubMed  Google Scholar 

  21. Quesada AE, Hu Z, Routbort MJ, Patel KP, Luthra R, Loghavi S, et al. Mixed phenotype acute leukemia contains heterogeneous genetic mutations by next-generation sequencing. Oncotarget. 2018;9:8441–9.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Alexander TB, Gu Z, Iacobucci I, Dickerson K, Choi JK, Xu B, et al. The genetic basis and cell of origin of mixed phenotype acute leukaemia. Nature. 2018;562:373–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Churpek JE, Pyrtel K, Kanchi KL, Shao J, Koboldt D, Miller CA, et al. Genomic analysis of germ line and somatic variants in familial myelodysplasia/acute myeloid leukemia. Blood. 2015;126:2484–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Alter BP. Fanconi anemia and the development of leukemia. Best Pract Res Clin Haematol. 2014;27:214–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Alter BP, Giri N, Savage SA, Rosenberg PS. Cancer in dyskeratosis congenita. Blood. 2009;113:6549–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Roberts I, Izraeli S. Haematopoietic development and leukaemia in Down syndrome. Br J Haematol. 2014;167:587–99.

    Article  CAS  PubMed  Google Scholar 

  27. Niemeyer CM. RAS diseases in children. Haematologica. 2014;99:1653–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pippucci T, Savoia A, Perrotta S, Pujol-Moix N, Noris P, Castegnaro G, et al. Mutations in the 5’ UTR of ANKRD26, the ankirin repeat domain 26 gene, cause an autosomal-dominant form of inherited thrombocytopenia, THC2. Am J Hum Genet. 2011;88:115–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Moriyama T, Metzger ML, Wu G, Nishii R, Qian M, Devidas M, et al. Germline genetic variation in ETV6 and risk of childhood acute lymphoblastic leukaemia: a systematic genetic study. Lancet Oncol. 2015;16:1659–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tawana K, Wang J, Renneville A, Bödör C, Hills R, Loveday C, et al. Disease evolution and outcomes in familial AML with germline CEBPA mutations. Blood. 2015;126:1214–23.

    Article  CAS  PubMed  Google Scholar 

  31. Takahashi K, Wang F, Morita K, Yan Y, Hu P, Zhao P, et al. Integrative genomic analysis of adult mixed phenotype acute leukemia delineates lineage associated molecular subtypes. Nat Commun. 2018;9:2670.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fierheller CT, Guitton-Sert L, Alenezi WM, Revil T, Oros KK, et al. A functionally impaired missense variant identified in French Canadian families implicates FANCI as a candidate ovarian cancer-predisposing gene. Genome Med. 2021;13:186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nalepa G, Clapp DW. Fanconi anaemia and cancer: an intricate relationship. Nat Rev Cancer. 2018;18:168–85.

    Article  CAS  PubMed  Google Scholar 

  34. Berwick M, Satagopan JM, Ben-Porat L, Carlson A, Mah K, Henry R, et al. Genetic heterogeneity among Fanconi anemia heterozygotes and risk of cancer. Cancer Res. 2007;67:9591–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Thompson ER, Doyle MA, Ryland GL, Rowley SM, Choong DY, Tothill RW, et al. Exome sequencing identifies rare deleterious mutations in DNA repair genes FANCC and BLM as potential breast cancer susceptibility alleles. PLoS Genet. 2012;8: e1002894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Maung KZY, Leo PJ, Bassal M, Casolari DA, Gray JX, Bray SC, et al. Rare variants in Fanconi anemia genes are enriched in acute myeloid leukemia. Blood Cancer J. 2018;8:50.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Duployez N, Largeaud L, Duchmann M, Kim R, Rieunier J, et al. Prognostic impact of DDX41 germline mutations in intensively treated acute myeloid leukemia patients: an ALFA-FILO study. Blood. 2022;140:756–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Avalos BR, Lazaryan A, Copelan EA. Can G-CSF cause leukemia in hematopoietic stem cell donors? Biol Blood Marrow Transplant. 2011;17:1739–46.

    Article  CAS  PubMed  Google Scholar 

  39. Socie G, Mary JY, Schrezenmeier H, Marsh J, Bacigalupo A, et al. Granulocyte-stimulating factor and severe aplastic anemia: a survey by the European Group for Blood and Marrow Transplantation (EBMT). Blood. 2007;109:2794–6.

    Article  CAS  PubMed  Google Scholar 

  40. Kojima S, Ohara A, Tsuchida M, Kudoh T, Hanada R, et al. Risk factors for evolution of acquired aplastic anemia into myelodysplastic syndrome and acute myeloid leukemia after immunosuppressive therapy in children. Blood. 2002;100:786–90.

    Article  CAS  PubMed  Google Scholar 

  41. Sloand EM, Yong AS, Ramkissoon S, Solomou E, Bruno TC, et al. Granulocyte colony-stimulating factor preferentially stimulates proliferation of monosomy 7 cells bearing the isoform IV receptor. Proc Natl Acad Sci U S A. 2006;103:14483–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all the members of our department for their indispensable support.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

YS: Writing—Original Draft. SF: Conceptualization, Methodology, Writing—Review & Editing. YN, SO: Data Curation. NN, TK, NS: Provision of study materials or patients’ information. HK: Modification of manuscript. TT: Supervision. All authors reviewed the manuscript draft and revised it critically on intellectual content. All authors approved the final version of the manuscript to be published.

Corresponding author

Correspondence to Shinya Fujita.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 12 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiozawa, Y., Fujita, S., Nannya, Y. et al. First report of familial mixed phenotype acute leukemia: shared clinical characteristics, Philadelphia translocation, and germline variants. Int J Hematol 119, 465–471 (2024). https://doi.org/10.1007/s12185-024-03724-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-024-03724-0

Keywords

Navigation