Skip to main content

Advertisement

Log in

Pretransplant hepatomegaly is linked to relapse in patients with leukemia and myelodysplastic syndrome not in remission

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Hepatomegaly is an extramedullary disease (EMD) manifestation of hematological malignancy. Although EMD before allogeneic hematopoietic stem cell transplantation (allo-HCT) is a risk factor for relapse in patients not in complete remission (NonCR) patients, the significance of hepatomegaly to allo-HCT is unclear. We conducted a single-center retrospective observational study of 140 patients with acute leukemia and myelodysplastic syndrome who underwent allo-HCT at our institution from 2014 to 2019. Hepatomegaly was assessed by ultrasonography using the liver index (LI). In the univariable analysis, the LI/height ratio was significantly associated with relapse (hazard ratio [HR] per standard deviation [sd]: 1.51, 95% confidence interval [CI] 1.18–1.93, p = 0.001, sd = 13.8) in NonCR patients (n = 62), but showed no significant association in CR patients (n = 78) (HR per sd: 0.95, 95% CI 0.64–1.39, p = 0.780, sd = 8.7). In multivariable analysis, the LI/height ratio was significantly associated with relapse (HR per sd: 1.34, 95% CI 1.02–1.78, p = 0.037) after adjusting for the refined disease risk index and conditioning intensity. Interaction analysis showed a noteworthy but not statistically significant association between the LI/height ratio and CR status (p = 0.110). In conclusion, our findings suggest that the LI may be a risk factor for relapse in NonCR patients after allo-HCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request. The data are not publicly available due to privacy or ethical restrictions.

References

  1. Huang Q, Reddi D, Chu P, Snyder DS, Weisenburger DD. Clinical and pathologic analysis of extramedullary tumors after hematopoietic stem cell transplantation. Hum Pathol. 2014;45(12):2404–10. https://doi.org/10.1016/j.humpath.2014.07.022.

    Article  PubMed  Google Scholar 

  2. Ge L, Ye F, Mao X, Chen J, Sun A, Zhu X, et al. Extramedullary relapse of acute leukemia after allogeneic hematopoietic stem cell transplantation: different characteristics between acute myelogenous leukemia and acute lymphoblastic leukemia. Biol Blood Marrow Transplant. 2014;20(7):1040–7. https://doi.org/10.1016/j.bbmt.2014.03.030.

    Article  PubMed  Google Scholar 

  3. Imanaka R, Katayama Y, Iwato K, Kyo K, Okatani T, Itagaki M, et al. Acute leukemia recurring as extramedullary tumors of the ovary following allogeneic hematopoietic stem cell transplantation. Rinsho ketsueki Japan J Clin Hematol. 2018;59(1):58–63. https://doi.org/10.11406/rinketsu.59.58.

    Article  Google Scholar 

  4. Yu J, Ge X, Luo Y, Shi J, Tan Y, Lai X, et al. Incidence, risk factors and outcome of extramedullary relapse after allogeneic hematopoietic stem cell transplantation in patients with adult acute lymphoblastic leukemia. Ann Hematol. 2020;99(11):2639–48. https://doi.org/10.1007/s00277-020-04199-9.

    Article  PubMed  Google Scholar 

  5. Byrd JC, Edenfield WJ, Shields DJ, Dawson NA. Extramedullary myeloid cell tumors in acute nonlymphocytic leukemia: a clinical review. J Clin Oncol. 1995;13(7):1800–16. https://doi.org/10.1200/jco.1995.13.7.1800.

    Article  CAS  PubMed  Google Scholar 

  6. Gunes G, Goker H, Demiroglu H, Malkan UY, Buyukasik Y. Extramedullary relapses of acute leukemias after allogeneic hematopoietic stem cell transplantation: clinical features, cumulative incidence, and risk factors. Bone Marrow Transplant. 2019;54(4):595–600. https://doi.org/10.1038/s41409-018-0303-5.

    Article  PubMed  Google Scholar 

  7. Xie N, Zhou J, Zhang Y, Yu F, Song Y. Extramedullary relapse of leukemia after allogeneic hematopoietic stem cell transplantation: a retrospective study. Medicine. 2019;98(19): e15584. https://doi.org/10.1097/md.0000000000015584.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lee KH, Lee JH, Choi SJ, Lee JH, Kim S, Seol M, et al. Bone marrow vs extramedullary relapse of acute leukemia after allogeneic hematopoietic cell transplantation: risk factors and clinical course. Bone Marrow Transplant. 2003;32(8):835–42. https://doi.org/10.1038/sj.bmt.1704223.

    Article  CAS  PubMed  Google Scholar 

  9. Poon LM, Hamdi A, Saliba R, Rondon G, Ledesma C, Kendrick M, et al. Outcomes of adults with acute lymphoblastic leukemia relapsing after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2013;19(7):1059–64. https://doi.org/10.1016/j.bbmt.2013.04.014.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Clark WB, Strickland SA, Barrett AJ, Savani BN. Extramedullary relapses after allogeneic stem cell transplantation for acute myeloid leukemia and myelodysplastic syndrome. Haematologica. 2010;95(6):860–3. https://doi.org/10.3324/haematol.2010.025890.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yamasaki S, Aoki J, Mori J, Mizuno S, Uchida N, Ohashi K, et al. Better disease control before allogeneic stem cell transplantation is crucial to improve the outcomes of transplantation for acute myeloid leukemia patients with extramedullary disease. Bone Marrow Transplant. 2020;55(1):249–52. https://doi.org/10.1038/s41409-019-0527-z.

    Article  PubMed  Google Scholar 

  12. Shimizu H, Saitoh T, Tanaka M, Mori T, Sakura T, Kawai N, et al. Allogeneic hematopoietic stem cell transplantation for adult AML patients with granulocytic sarcoma. Leukemia. 2012;26(12):2469–73. https://doi.org/10.1038/leu.2012.156.

    Article  CAS  PubMed  Google Scholar 

  13. Goldberg GM, Rubenstone AI. A study of malignant lymphomas and leukemias. I. The significance of liver portal space “infiltration” in lymphogenous leukemia (with reference to the involvement of the lymphatics). Cancer. 1960;13:513–9 https://doi.org/10.1002/1097-0142(196005/06)13:3<513::aid-cncr2820130314>3.0.co;2-h

  14. Zafrani ES, Leclercq B, Vernant JP, Pinaudeau Y, Chomette G, Dhumeaux D. Massive blastic infiltration of the liver: a cause of fulminant hepatic failure. Hepatology (Baltimore, MD). 1983;3(3):428–32. https://doi.org/10.1002/hep.1840030324.

    Article  CAS  PubMed  Google Scholar 

  15. Roos E, Dingemans KP, van de Pavert IV, van den Bergh-Weerman M. Invasion of lymphosarcoma cells into the perfused mouse liver. J Natl Cancer Inst. 1977;58(2):399–407. https://doi.org/10.1093/jnci/58.2.399.

    Article  CAS  PubMed  Google Scholar 

  16. Neudorf S, Sanders J, Kobrinsky N, Alonzo TA, Buxton AB, Gold S, et al. Allogeneic bone marrow transplantation for children with acute myelocytic leukemia in first remission demonstrates a role for graft versus leukemia in the maintenance of disease-free survival. Blood. 2004;103(10):3655–61. https://doi.org/10.1182/blood-2003-08-2705.

    Article  CAS  PubMed  Google Scholar 

  17. Armand P, Kim HT, Logan BR, Wang Z, Alyea EP, Kalaycio ME, et al. Validation and refinement of the Disease Risk Index for allogeneic stem cell transplantation. Blood. 2014;123(23):3664–71. https://doi.org/10.1182/blood-2014-01-552984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Koreth J, Schlenk R, Kopecky KJ, Honda S, Sierra J, Djulbegovic BJ, et al. Allogeneic stem cell transplantation for acute myeloid leukemia in first complete remission: systematic review and meta-analysis of prospective clinical trials. JAMA. 2009;301(22):2349–61. https://doi.org/10.1001/jama.2009.813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Scott BL, Pasquini MC, Logan BR, Wu J, Devine SM, Porter DL, et al. Myeloablative versus reduced-intensity hematopoietic cell transplantation for acute myeloid leukemia and myelodysplastic syndromes. J Clin Oncol. 2017;35(11):1154–61. https://doi.org/10.1200/jco.2016.70.7091.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rambaldi A, Grassi A, Masciulli A, Boschini C, Micò MC, Busca A, et al. Busulfan plus cyclophosphamide versus busulfan plus fludarabine as a preparative regimen for allogeneic haemopoietic stem-cell transplantation in patients with acute myeloid leukaemia: an open-label, multicentre, randomised, phase 3 trial. Lancet Oncol. 2015;16(15):1525–36. https://doi.org/10.1016/s1470-2045(15)00200-4.

    Article  CAS  PubMed  Google Scholar 

  21. Fleischhauer K, Hsu KC, Shaw BE. Prevention of relapse after allogeneic hematopoietic cell transplantation by donor and cell source selection. Bone Marrow Transplant. 2018;53(12):1498–507. https://doi.org/10.1038/s41409-018-0218-1.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lee SJ, Logan B, Westervelt P, Cutler C, Woolfrey A, Khan SP, et al. Comparison of patient-reported outcomes in 5-year survivors who received bone marrow vs peripheral blood unrelated donor transplantation: long-term follow-up of a randomized clinical trial. JAMA Oncol. 2016;2(12):1583–9. https://doi.org/10.1001/jamaoncol.2016.2520.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Milano F, Gooley T, Wood B, Woolfrey A, Flowers ME, Doney K, et al. Cord-blood transplantation in patients with minimal residual disease. N Engl J Med. 2016;375(10):944–53. https://doi.org/10.1056/NEJMoa1602074.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Atsuta Y, Kanda J, Takanashi M, Morishima Y, Taniguchi S, Takahashi S, et al. Different effects of HLA disparity on transplant outcomes after single-unit cord blood transplantation between pediatric and adult patients with leukemia. Haematologica. 2013;98(5):814–22. https://doi.org/10.3324/haematol.2012.076042.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wright DE, Wagers AJ, Gulati AP, Johnson FL, Weissman IL. Physiological migration of hematopoietic stem and progenitor cells. Science (New York, NY). 2001;294(5548):1933–6. https://doi.org/10.1126/science.1064081.

    Article  ADS  CAS  Google Scholar 

  26. Olsson RF, Logan BR, Chaudhury S, Zhu X, Akpek G, Bolwell BJ, et al. Primary graft failure after myeloablative allogeneic hematopoietic cell transplantation for hematologic malignancies. Leukemia. 2015;29(8):1754–62. https://doi.org/10.1038/leu.2015.75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hart C, Klatt S, Barop J, Müller G, Schelker R, Holler E, et al. Splenic pooling and loss of VCAM-1 causes an engraftment defect in patients with myelofibrosis after allogeneic hematopoietic stem cell transplantation. Haematologica. 2016;101(11):1407–16. https://doi.org/10.3324/haematol.2016.146811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Remberger M, Mattsson J, Olsson R, Ringdén O. Second allogeneic hematopoietic stem cell transplantation: a treatment for graft failure. Clin Transplant. 2011;25(1):E68-76. https://doi.org/10.1111/j.1399-0012.2010.01324.x.

    Article  PubMed  Google Scholar 

  29. Helenglass G, Treleaven J, Parikh P, Aboud H, Smith C, Powles R. Delayed engraftment associated with splenomegaly in patients undergoing bone marrow transplantation for chronic myeloid leukaemia. Bone Marrow Transplant. 1990;5(4):247–51.

    CAS  PubMed  Google Scholar 

  30. Schriber J, Agovi MA, Ho V, Ballen KK, Bacigalupo A, Lazarus HM, et al. Second unrelated donor hematopoietic cell transplantation for primary graft failure. Biol Blood Marrow Transplant. 2010;16(8):1099–106. https://doi.org/10.1016/j.bbmt.2010.02.013.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Akpek G, Pasquini MC, Logan B, Agovi MA, Lazarus HM, Marks DI, et al. Effects of spleen status on early outcomes after hematopoietic cell transplantation. Bone Marrow Transplant. 2013;48(6):825–31. https://doi.org/10.1038/bmt.2012.249.

    Article  CAS  PubMed  Google Scholar 

  32. Bacigalupo A, Soraru M, Dominietto A, Pozzi S, Geroldi S, Van Lint MT, et al. Allogeneic hemopoietic SCT for patients with primary myelofibrosis: a predictive transplant score based on transfusion requirement, spleen size and donor type. Bone Marrow Transplant. 2010;45(3):458–63. https://doi.org/10.1038/bmt.2009.188.

    Article  CAS  PubMed  Google Scholar 

  33. Khimani F, Jeong DK, Miladinovic B, Nishihori T, Ayala E, Locke F, et al. Nonfluorodeoxyglucose-Avid persistent splenomegaly at time of transplantation delays neutrophil and platelets engraftment without affecting survival in patients with lymphomas undergoing allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2016;22(12):2201–7. https://doi.org/10.1016/j.bbmt.2016.09.014.

    Article  PubMed  Google Scholar 

  34. Sorror ML, Maris MB, Storb R, Baron F, Sandmaier BM, Maloney DG, et al. Hematopoietic cell transplantation (HCT)-specific comorbidity index: a new tool for risk assessment before allogeneic HCT. Blood. 2005;106(8):2912–9. https://doi.org/10.1182/blood-2005-05-2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bacigalupo A, Ballen K, Rizzo D, Giralt S, Lazarus H, Ho V, et al. Defining the intensity of conditioning regimens: working definitions. Biol Blood Marrow Transplant. 2009;15(12):1628–33. https://doi.org/10.1016/j.bbmt.2009.07.004.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Przepiorka D, Weisdorf D, Martin P, Klingemann HG, Beatty P, Hows J et al. 1994 Consensus Conference on Acute GVHD Grading. Bone Marrow Transplant. 1995;15(6):825–8.

  37. Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424–47. https://doi.org/10.1182/blood-2016-08-733196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brunner AM, Gavralidis A, Ali NA, Hunter A, Komrokji R, Zeidan A, et al. Evaluating complete remission with partial hematologic recovery (CRh) as a response criterion in myelodysplastic syndromes (MDS). Blood Cancer J. 2022;12(11):153. https://doi.org/10.1038/s41408-022-00748-9.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Okaniwa S, Hirai T, Ogawa M, Tanaka S, Inui K, Wada T et al. Manual for abdominal ultrasound in cancer screening and health checkups, revised edition (2021). J Med Ultrason (2001). 2023;50(1):5–49. https://doi.org/10.1007/s10396-022-01272-w.

  40. Nishida M, Kahata K, Hayase E, Shigematsu A, Sato M, Kudo Y, et al. Novel ultrasonographic scoring system of sinusoidal obstruction syndrome after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2018;24(9):1896–900. https://doi.org/10.1016/j.bbmt.2018.05.025.

    Article  PubMed  Google Scholar 

  41. Ishibashi H, Higuchi N, Shimamura R, Hirata Y, Kudo J, Niho Y. Sonographic assessment and grading of spleen size. J Clin Ultrasound JCU. 1991;19(1):21–5. https://doi.org/10.1002/jcu.1870190106.

    Article  CAS  PubMed  Google Scholar 

  42. Jiao YF, Okumiya T, Saibara T, Kudo Y, Sugiura T. Erythrocyte creatine as a marker of excessive erythrocyte destruction due to hypersplenism in patients with liver cirrhosis. Clin Biochem. 2001;34(5):395–8. https://doi.org/10.1016/s0009-9120(01)00242-9.

    Article  CAS  PubMed  Google Scholar 

  43. Ferrà C, Sanz J, Díaz-Pérez MA, Morgades M, Gayoso J, Cabrera JR, et al. Outcome of graft failure after allogeneic stem cell transplant: study of 89 patients. Leuk Lymphoma. 2015;56(3):656–62. https://doi.org/10.3109/10428194.2014.930849.

    Article  PubMed  Google Scholar 

  44. Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48(3):452–8. https://doi.org/10.1038/bmt.2012.244.

    Article  CAS  PubMed  Google Scholar 

  45. Kratzer W, Fritz V, Mason RA, Haenle MM, Kaechele V. Factors affecting liver size: a sonographic survey of 2080 subjects. J Ultrasound Med. 2003;22(11):1155–61. https://doi.org/10.7863/jum.2003.22.11.1155.

    Article  PubMed  Google Scholar 

  46. Frei E 3rd, Fritz RD, Price E, Moore EW, Thomas LB. Renal and hepatic enlargement in acute leukemia. Cancer. 1963;16:1089–92. https://doi.org/10.1002/1097-0142(196308)16:8%3c1089::aid-cncr2820160817%3e3.0.co;2-1.

    Article  PubMed  Google Scholar 

  47. Wolf RL, Klemperer P. Determination of weight and volume of liver cells in leukemia. Am J Clin Pathol. 1955;25(9):988–93. https://doi.org/10.1093/ajcp/25.9.988.

    Article  CAS  PubMed  Google Scholar 

  48. Ishikawa T, Fujii N, Imada M, Aoe M, Meguri Y, Inomata T, et al. Graft-versus-leukemia effect with a WT1-specific T-cell response induced by azacitidine and donor lymphocyte infusions after allogeneic hematopoietic stem cell transplantation. Cytotherapy. 2017;19(4):514–20. https://doi.org/10.1016/j.jcyt.2016.12.007.

    Article  CAS  PubMed  Google Scholar 

  49. Mathew NR, Baumgartner F, Braun L, O’Sullivan D, Thomas S, Waterhouse M, et al. Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells. Nat Med. 2018;24(3):282–91. https://doi.org/10.1038/nm.4484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xuan L, Wang Y, Huang F, Fan Z, Xu Y, Sun J, et al. Sorafenib maintenance in patients with FLT3-ITD acute myeloid leukaemia undergoing allogeneic haematopoietic stem-cell transplantation: an open-label, multicentre, randomised phase 3 trial. Lancet Oncol. 2020;21(9):1201–12. https://doi.org/10.1016/s1470-2045(20)30455-1.

    Article  CAS  PubMed  Google Scholar 

  51. Choi SW, Braun T, Chang L, Ferrara JL, Pawarode A, Magenau JM, et al. Vorinostat plus tacrolimus and mycophenolate to prevent graft-versus-host disease after related-donor reduced-intensity conditioning allogeneic haemopoietic stem-cell transplantation: a phase 1/2 trial. Lancet Oncol. 2014;15(1):87–95. https://doi.org/10.1016/s1470-2045(13)70512-6.

    Article  CAS  PubMed  Google Scholar 

  52. Yoshihara S, Ando T, Ogawa H. Extramedullary relapse of acute myeloid leukemia after allogeneic hematopoietic stem cell transplantation: an easily overlooked but significant pattern of relapse. Biol Blood Marrow Transplant. 2012;18(12):1800–7. https://doi.org/10.1016/j.bbmt.2012.05.010.

    Article  PubMed  Google Scholar 

  53. Ochi T, Iwato K, Katayama Y, Toishigawa K, Okatani T, Imanaka R et al. Post-allogeneic stem cell transplant extramedullary relapse of acute megakaryoblastic leukemia initially detected by elevated WT1 mRNA levels in peripheral blood. [Rinsho ketsueki] Japanese J Clin Hematol 2016;57(11):2319–23. https://doi.org/10.11406/rinketsu.57.2319.

  54. Stölzel F, Lüer T, Löck S, Parmentier S, Kuithan F, Kramer M, et al. The prevalence of extramedullary acute myeloid leukemia detected by (18)FDG-PET/CT: final results from the prospective PETAML trial. Haematologica. 2020;105(6):1552–8. https://doi.org/10.3324/haematol.2019.223032.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank S. Ishikawa for her valuable secretarial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naonori Harada.

Ethics declarations

Conflict of interest

There are no conflicts of interest related to the submitted work. Dr. Makuuchi, Dr. Kuno, and Dr. Hirose stated no conflicts of interest. Dr. Okayama has received honoraria from Sanofi K.K. Dr. Harada has received honoraria from Chugai Pharmaceutical Co., Ltd., Sanofi K.K., Bristol-Myers Squibb K.K., Janssen Pharmaceutical K.K., Meiji Seika Pharma Co., Ltd., and Nippon Shinyaku Co., Ltd. Dr. Takakuwa has received honoraria from AbbVie GK, Kyowa Kirin Co., Ltd., Sanofi K.K., Chugai Pharmaceutical Co., Ltd., Novartis Pharma K.K., Bristol-Myers Squibb K.K., and Janssen Pharmaceutical K.K., has received research funding from AbbVie GK, GlaxoSmithKline K.K., Pfizer Japan Inc., and Bristol-Myers Squibb K.K., and has received consulting fees from Sanofi K.K. Dr. Okamura has received honoraria from Nippon Shinyaku Co., Ltd. Dr. Mika Nakamae has received research funding from VERITAS Corporation, and her family received honoraria (see Dr. Hirohisa Nakamae’s honoraria). Dr. Nishimoto has received honoraria from Kyowa Kirin Co., Ltd., Otsuka Pharmaceutical Co., Ltd., Janssen Pharmaceutical K.K., and Nippon Shinyaku Co., Ltd., and has received research funding from Janssen Pharmaceutical K.K., Pfizer Japan Inc., and Astellas Pharma Inc. Dr. Nakashima has received honoraria from Amgen Inc., Kyowa Kirin Co., Ltd., Chugai Pharmaceutical Co., Ltd., Novartis Pharma K.K., Bristol-Myers Squibb K.K., and Janssen Pharmaceutical K.K., has received research funding from Astellas Pharma Inc., AbbVie GK, Amgen Inc., Chugai Pharmaceutical Co., Ltd., Novartis Pharma K.K., and Bristol-Myers Squibb K.K., and has received advisory fees from Amgen Inc. and Novartis Pharma K.K. Dr. Koh has received honoraria from Sumitomo Pharma Co., Ltd., MSD K.K., and Novartis Pharma K.K. and has received research funding from Amgen Inc. Dr. Hino has received honoraria from Meiji Seika Pharma Co., Ltd., Astellas Pharma Inc., AbbVie GK, Amgen Inc., Otsuka Pharmaceutical Co., Ltd., Kyowa Kirin Co., Ltd., Sanofi K.K., Sumitomo Pharma Co., Ltd., Chugai Pharmaceutical Co., Ltd., Nippon Shinyaku Co., Ltd., Novartis Pharma K.K., Pfizer Japan Inc., Bristol-Myers Squibb K.K., Janssen Pharmaceutical K.K., and MSD K.K., has received consulting fees from DAIICHI SANKYO COMPANY, the LIMITED., has received research funding from Nippon Shinyaku Co., Ltd., Pfizer Japan Inc., and Bristol-Myers Squibb K.K., and has received advisory fees from Otsuka Pharmaceutical Co., Ltd. and Kyowa Kirin Co., Ltd., and has donations from JCR Pharmaceuticals Co., Ltd., Otsuka Pharmaceutical Co., Ltd., Kyowa Kirin Co., Ltd., DAIICHI SANKYO COMPANY, the LIMITED., Chugai Pharmaceutical Co., Ltd., Sumitomo Pharma Co., Ltd., and Sumitomo Pharma Co., Ltd. Dr. Hirohisa Nakamae has received honoraria from Astellas Pharma Inc., Amgen Inc., Otsuka Pharmaceutical Co., Ltd., DAIICHI SANKYO COMPANY, the LIMITED., Sumitomo Pharma Co., Ltd., Nippon Shinyaku Co., Ltd., Novartis Pharma K.K., Bristol-Myers Squibb K.K., and Janssen Pharmaceutical K.K., has received advisory fees from Novartis Pharma K.K., and has received research funding from Meiji Seika Pharma Co., Ltd., Novartis Pharma K.K., and Bristol-Myers Squibb K.K. (none of which are related to the submitted work). Authorship statement: Y.O., N.H., M.H., and H.N. conceptualized and designed the study. A.H. and M. Nakamae acquired data. Y.O. and N.H. analyzed the data, interpreted the results, and wrote the manuscript. Y.M., M.K., T.T., H.O., A.H., M. Nakamae, M. Nishimoto, Y.N., H.K., M.H., and H.N. interpreted the results and critically reviewed and revised the manuscript. All authors read and approved the final version of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 66 KB)

12185_2023_3707_MOESM2_ESM.tif

Supplementary file2 (TIF 3596 KB) Supplemental Fig. S1. Differences in the LI and SI based on the presence of EMD before allo-HCT in NonCR patients. The LI and SI were significantly higher in patients with EMD before allo-HCT (median LI: 101.4 [range: 69.2-185.5] cm2, median SI: 56.8 [range: 15.5-138.6] cm2) than in patients without EMD before allo-HCT (median LI: 82.6 [range: 43.3-122.5] cm2, median SI: 34.0 [range: 17.9-66.7] cm2) (< 0.001 and < 0.001, respectively). LI, liver index; SI, spleen index; EMD, extramedullary disease

12185_2023_3707_MOESM3_ESM.tif

Supplementary file3 (TIF 3480 KB) Supplemental Fig. S2. Differences in the LI and SI based on the presence of EMD relapse in NonCR patients. The LI and SI were not significantly different in patients with EMD relapse (median LI: 103.0 [range: 50.0-120.2] cm2, median SI: 37.4 [range: 17.9-133.4] cm2) and in patients without EMD relapse (median LI: 89.2 [range: 66.9-185.5] cm2, median SI: 39.0 [range: 21.5-138.6] cm2) (= 0.218 and = 1.000, respectively). LI, liver index; SI, spleen index; EMD, extramedullary disease

12185_2023_3707_MOESM4_ESM.tif

Supplementary file4 (TIF 3599 KB) Supplemental Fig. S3. Differences in the LI based on the presence of pretransplant liver dysfunction. The LI did not significantly differ between individuals with and without pretransplant liver dysfunction among NonCR patients (median LI: 94.3 [59.8-185.5] cm2 and 87.7 [range: 43.3-139.2] cm2, respectively, = 0.301), and CR patients (median LI: 86.8 [range: 65.0-119.4] cm2 and 85.0 [range: 55.2-122.8] cm2, respectively, = 0.814). LI, liver index; NonCR, noncomplete remission; CR, complete remission

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okayama, Y., Harada, N., Makuuchi, Y. et al. Pretransplant hepatomegaly is linked to relapse in patients with leukemia and myelodysplastic syndrome not in remission. Int J Hematol 119, 316–326 (2024). https://doi.org/10.1007/s12185-023-03707-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-023-03707-7

Keywords

Navigation