Skip to main content

Advertisement

Log in

Efficacy and safety of CD19 CAR-T cell therapy for acute lymphoblastic leukemia patients relapsed after allogeneic hematopoietic stem cell transplantation

  • Progress in Hematology
  • Prevention and management of relapse after allogeneic hematopoietic cell transplantation in hematological malignancies
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective therapy for B-cell acute lymphoblastic leukemia (B-ALL). Although allo-HSCT can be curative for some B-ALL patients, relapse still occurs in some patients following allo-HSCT. Conventional chemotherapies show poor efficacy in B-ALL patients who have relapsed following allo-HSCT. In the past decade, chimeric antigen receptor T-cell (CAR-T) therapy has shown to be efficacious for B-ALL patients. In particular, autologous CD19 CAR-T therapy results in a high remission rate. However, there are challenges in the use of CD19 CAR-T therapy for B-ALL patients who have relapsed following allo-HSCT, including the selection of CAR-T cell source for manufacturing, post-CAR-T graft-versus-host disease (GVHD) risk, maintenance of long-term efficacy after remission through CAR-T therapy, and whether a consolidative second transplant is needed. In this review, we describe the current status of CAR-T therapy for B-ALL patients who have relapsed following allo-HSCT, the advantages and disadvantages of various CAR-T cell sources, the characteristics and management of GVHD following CAR-T therapy, and the risk factors that may affect long-term efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang XH, Chen J, Han MZ, Huang H, Jiang EL, Jiang M, et al. The consensus from the Chinese society of hematology on indications, conditioning regimens and donor selection for allogeneic hematopoietic stem cell transplantation: 2021 update. J Hematol Oncol. 2021;14(1):145. https://doi.org/10.1186/s13045-021-01159-2.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Willasch AM, Salzmann-Manrique E, Krenn T, Duerken M, Faber J, Opper J, et al. Treatment of relapse after allogeneic stem cell transplantation in children and adolescents with ALL: the Frankfurt experience. Bone Marrow Transplant. 2017;52(2):201–8. https://doi.org/10.1038/bmt.2016.224.

    Article  CAS  PubMed  Google Scholar 

  3. Spyridonidis A, Labopin M, Schmid C, Volin L, Yakoub-Agha I, Stadler M, et al. Outcomes and prognostic factors of adults with acute lymphoblastic leukemia who relapse after allogeneic hematopoietic cell transplantation. an analysis on behalf of the acute leukemia working party of EBMT. Leukemia. 2012;26(6):1211–7. https://doi.org/10.1038/leu.2011.351.

    Article  CAS  PubMed  Google Scholar 

  4. Stein AS, Kantarjian H, Gokbuget N, Bargou R, Litzow MR, Rambaldi A, et al. Blinatumomab for acute lymphoblastic leukemia relapse after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2019;25(8):1498–504. https://doi.org/10.1016/j.bbmt.2019.04.010.

    Article  CAS  PubMed  Google Scholar 

  5. Papayannidis C, Sartor C, Dominietto A, Zappone E, Arpinati M, Marconi G, et al. Inotuzumab ozogamicin and donor lymphocyte infusion is a safe and promising combination in relapsed acute lymphoblastic leukemia after allogeneic stem cell transplant. Hematol Oncol. 2021;39(4):580–3. https://doi.org/10.1002/hon.2886.

    Article  CAS  PubMed  Google Scholar 

  6. Martino M, Alati C, Canale FA, Musuraca G, Martinelli G, Cerchione C. A Review of clinical outcomes of CAR T-Cell therapies for B-Acute lymphoblastic leukemia. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22042150.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tedder TF, Zhou LJ, Engel P. The CD19/CD21 signal transduction complex of B lymphocytes. Immunol Today. 1994;15(9):437–42. https://doi.org/10.1016/0167-5699(94)90274-7.

    Article  CAS  PubMed  Google Scholar 

  8. Matsuo Y, Drexler HG. Establishment and characterization of human B cell precursor-leukemia cell lines. Leuk Res. 1998;22(7):567–79. https://doi.org/10.1016/s0145-2126(98)00050-2.

    Article  CAS  PubMed  Google Scholar 

  9. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–17.

    Article  Google Scholar 

  10. Graham C, Jozwik A, Pepper A, Benjamin R. Allogeneic CAR-T Cells: more than ease of access? Cells. 2018. https://doi.org/10.3390/cells7100155.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Roddie C, O’Reilly M, Dias APJ, Vispute K, Lowdell M. Manufacturing chimeric antigen receptor T cells: issues and challenges. Cytotherapy. 2019;21(3):327–40. https://doi.org/10.1016/j.jcyt.2018.11.009.

    Article  CAS  PubMed  Google Scholar 

  12. Dietz AC, Wayne AS. Cells to prevent/treat relapse following allogeneic stem cell transplantation. Hematology Am Soc Hematol Educ Program. 2017;2017(1):708–15.

    Article  Google Scholar 

  13. Zhang X, Yang JF, Li JJ, Li WQ, Song D, Lu XA, et al. Factors associated with treatment response to CD19 CAR-T therapy among a large cohort of B cell acute lymphoblastic leukemia. Cancer Immunol Immunother. 2022;71(3):689–703. https://doi.org/10.1007/s00262-021-03009-z.

    Article  CAS  PubMed  Google Scholar 

  14. Aamir S, Anwar MY, Khalid F, Khan SI, Ali MA, Khattak ZE. Systematic review and meta-analysis of CD19-Specific CAR-T Cell therapy in relapsed/refractory acute lymphoblastic leukemia in the pediatric and young adult population: safety and efficacy outcomes. Clin Lymphoma Myeloma Leuk. 2021;21(4):e334–47. https://doi.org/10.1016/j.clml.2020.12.010.

    Article  PubMed  Google Scholar 

  15. Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med. 2011;3(95):73r–95r. https://doi.org/10.1126/scitranslmed.3002842.

    Article  CAS  Google Scholar 

  16. Brentjens RJ, Riviere I, Park JH, Davila ML, Wang X, Stefanski J, et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood. 2011;118(18):4817–28. https://doi.org/10.1182/blood-2011-04-348540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. The Lancet. 2015;385(9967):517–28. https://doi.org/10.1016/S0140-6736(14)61403-3.

    Article  CAS  Google Scholar 

  18. Davila ML, Riviere I, Wang X, Bartido S, Park J, Curran K, et al. Efficacy and toxicity management of 19–28z CAR T-cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med. 2014;6(224):224r–5r. https://doi.org/10.1126/scitranslmed.3008226.

    Article  CAS  Google Scholar 

  19. Savoldo B, Ramos CA, Liu E, Mims MP, Keating MJ, Carrum G, et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Invest. 2011;121(5):1822–6. https://doi.org/10.1172/JCI46110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Turtle CJ, Hanafi LA, Berger C, Gooley TA, Cherian S, Hudecek M, et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J Clin Invest. 2016;126(6):2123–38. https://doi.org/10.1172/JCI85309.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Park JH, Riviere I, Gonen M, Wang X, Senechal B, Curran KJ, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378(5):449–59. https://doi.org/10.1056/NEJMoa1709919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. June CH, Sadelain M. Chimeric antigen receptor therapy. N Engl J Med. 2018;379(1):64–73. https://doi.org/10.1056/NEJMra1706169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368(16):1509–18. https://doi.org/10.1056/NEJMoa1215134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gardner RA, Finney O, Annesley C, Brakke H, Summers C, Leger K, et al. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood. 2017;129(25):3322–31. https://doi.org/10.1182/blood-2017-02-769208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dai HR, Zhang WY, Li XL, Han QW, Guo YL, Zhang YJ, et al. Tolerance and efficacy of autologous or donor-derived T cells expressing CD19 chimeric antigen receptors in adult B-ALL with extramedullary leukemia. Oncoimmunology. 2015;4(11):e1027469. https://doi.org/10.1080/2162402X.2015.1027469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brudno JN, Somerville RP, Shi V, Rose JJ, Halverson DC, Fowler DH, et al. Allogeneic T Cells that express an Anti-CD19 chimeric antigen receptor induce remissions of B-Cell malignancies that progress after allogeneic hematopoietic stem-cell transplantation without causing graft-versus-host disease. J Clin Oncol. 2016;34(10):1112–21. https://doi.org/10.1200/JCO.2015.64.5929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kebriaei P, Singh H, Huls MH, Figliola MJ, Bassett R, Olivares S, et al. Phase I trials using sleeping beauty to generate CD19-specific CAR T cells. J Clin Invest. 2016;126(9):3363–76. https://doi.org/10.1172/JCI86721.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chen YH, Cheng YF, Suo P, Yan CH, Wang Y, Chen Y, et al. Donor-derived CD19-targeted T-cell infusion induces minimal residual disease-negative remission in relapsed B-cell acute lymphoblastic leukaemia with no response to donor lymphocyte infusions after haploidentical haematopoietic stem cell transplantation. Br J Haematol. 2017;179(4):598–605. https://doi.org/10.1111/bjh.14923.

    Article  CAS  PubMed  Google Scholar 

  29. Hu Y, Wang J, Wei G, Yu J, Luo Y, Shi J, et al. A retrospective comparison of allogenic and autologous chimeric antigen receptor T-cell therapy targeting CD19 in patients with relapsed/refractory acute lymphoblastic leukemia. Bone Marrow Transplant. 2019;54(8):1208–17. https://doi.org/10.1038/s41409-018-0403-2.

    Article  CAS  PubMed  Google Scholar 

  30. Hua JS, Zhang J, Wu XX, Zhou LL, Bao XB, Han Y, et al. Allogeneic donor-derived anti-CD19 CAR T Cell is a promising therapy for relapsed/refractory B-ALL after allogeneic hematopoietic stem-cell transplantation. Clin Lymphoma Myeloma Leuk. 2020;20(9):610–6. https://doi.org/10.1016/j.clml.2020.04.007.

    Article  PubMed  Google Scholar 

  31. Zhang X, Lu XA, Yang JF, Zhang GL, Li JJ, Song LS, et al. Efficacy and safety of anti-CD19 CAR T-cell therapy in 110 patients with B-cell acute lymphoblastic leukemia with high-risk features. Blood Adv. 2020;4(10):2325–38. https://doi.org/10.1182/bloodadvances.2020001466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pasquini MC, Hu ZH, Curran K, Laetsch T, Locke F, Rouce R, et al. Real-world evidence of tisagenlecleucel for pediatric acute lymphoblastic leukemia and non-Hodgkin lymphoma. Blood Adv. 2020;4(21):5414–24. https://doi.org/10.1182/bloodadvances.2020003092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hay KA, Gauthier J, Hirayama AV, Voutsinas JM, Wu Q, Li D, et al. Factors associated with durable EFS in adult B-cell ALL patients achieving MRD-negative CR after CD19 CAR T-cell therapy. Blood. 2019;133(15):1652–63. https://doi.org/10.1182/blood-2018-11-883710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nagle K, Tafuto B, Palladino KL, Parrott JS. Effect of transplant status in CD19-targeted CAR T-cell therapy: a systematic review and meta-analysis. Med Oncol. 2018;35(11):144. https://doi.org/10.1007/s12032-018-1204-6.

    Article  CAS  PubMed  Google Scholar 

  35. Wagner DL, Fritsche E, Pulsipher MA, Ahmed N, Hamieh M, Hegde M, et al. Immunogenicity of CAR T cells in cancer therapy. Nat Rev Clin Oncol. 2021;18(6):379–93. https://doi.org/10.1038/s41571-021-00476-2.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang TF, Cao L, Xie J, Shi N, Zhang Z, Luo ZZ, et al. Efficiency of CD19 chimeric antigen receptor-modified T cells for treatment of B cell malignancies in phase I clinical trials: a meta-analysis. Oncotarget. 2015;6(32):33961–71. https://doi.org/10.18632/oncotarget.5582.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Xia AL, Zhang Y, Xu J, Yin T, Lu XJ. T Cell dysfunction in cancer immunity and immunotherapy. Front Immunol. 2019;10:1719. https://doi.org/10.3389/fimmu.2019.01719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sanber K, Savani B, Jain T. Graft-versus-host disease risk after chimeric antigen receptor T-cell therapy: the diametric opposition of T cells. Br J Haematol. 2021;195(5):660–8. https://doi.org/10.1111/bjh.17544.

    Article  CAS  PubMed  Google Scholar 

  39. Ding LJ, Wang YY, Hong RM, Zhao HL, Zhou LH, Wei GQ, et al. Efficacy and safety of chimeric antigen receptor T Cells in acute lymphoblastic leukemia with post-transplant relapse. Front Oncol. 2021;11:750218. https://doi.org/10.3389/fonc.2021.750218.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lin HL, Cheng JL, Mu W, Zhou JF, Zhu L. Advances in universal CAR-T Cell therapy. Front Immunol. 2021;12:744823. https://doi.org/10.3389/fimmu.2021.744823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Benjamin R, Graham C, Yallop D, Jozwik A, Mirci-Danicar OC, Lucchini G, et al. Genome-edited, donor-derived allogeneic anti-CD19 chimeric antigen receptor T cells in paediatric and adult B-cell acute lymphoblastic leukaemia: results of two phase 1 studies. Lancet. 2020;396(10266):1885–94. https://doi.org/10.1016/S0140-6736(20)32334-5.

    Article  CAS  PubMed  Google Scholar 

  42. Mahadeo KM, Khazal SJ, Abdel-Azim H, Fitzgerald JC, Taraseviciute A, Bollard CM, et al. Management guidelines for paediatric patients receiving chimeric antigen receptor T-cell therapy. Nat Rev Clin Oncol. 2019;16(1):45–63. https://doi.org/10.1038/s41571-018-0075-2.

    Article  CAS  PubMed  Google Scholar 

  43. Gattinoni L, Finkelstein SE, Klebanoff CA, Antony PA, Palmer DC, Spiess PJ, et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med. 2005;202(7):907–12. https://doi.org/10.1084/jem.20050732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Corrigan-Curay J, Kiem HP, Baltimore D, O’Reilly M, Brentjens RJ, Cooper L, et al. T-cell immunotherapy: looking forward. Mol Ther. 2014;22(9):1564–74. https://doi.org/10.1038/mt.2014.148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hirayama AV, Gauthier J, Hay KA, Voutsinas JM, Wu Q, Gooley T, et al. The response to lymphodepletion impacts PFS in patients with aggressive non-Hodgkin lymphoma treated with CD19 CAR T cells. Blood. 2019;133(17):1876–87. https://doi.org/10.1182/blood-2018-11-887067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kochenderfer JN, Dudley ME, Carpenter RO, Kassim SH, Rose JJ, Telford WG, et al. Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation. Blood. 2013;122(25):4129–39. https://doi.org/10.1182/blood-2013-08-519413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Curran KJ, Margossian SP, Kernan NA, Silverman LB, Williams DA, Shukla N, et al. Toxicity and response after CD19-specific CAR T-cell therapy in pediatric/young adult relapsed/refractory B-ALL. Blood. 2019;134(26):2361–8. https://doi.org/10.1182/blood.2019001641.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rubio MT, D’Aveni-Piney M, Labopin M, Hamladji RM, Sanz MA, Blaise D, et al. Impact of in vivo T-cell depletion in HLA-identical allogeneic stem cell transplantation for acute myeloid leukemia in first complete remission conditioned with a fludarabine iv-busulfan myeloablative regimen: a report from the EBMT acute leukemia working party. J Hematol Oncol. 2017;10(1):31. https://doi.org/10.1186/s13045-016-0389-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Han LJ, Wang Y, Fan ZP, Huang F, Zhou J, Fu YW, et al. Haploidentical transplantation compared with matched sibling and unrelated donor transplantation for adults with standard-risk acute lymphoblastic leukaemia in first complete remission. Br J Haematol. 2017;179(1):120–30. https://doi.org/10.1111/bjh.14854.

    Article  CAS  PubMed  Google Scholar 

  50. Yu S, Huang F, Wang Y, Xu Y, Yang T, Fan Z, et al. Haploidentical transplantation might have superior graft-versus-leukemia effect than HLA-matched sibling transplantation for high-risk acute myeloid leukemia in first complete remission: a prospective multicentre cohort study. Leukemia. 2020;34(5):1433–43. https://doi.org/10.1038/s41375-019-0686-3.

    Article  CAS  PubMed  Google Scholar 

  51. Wang Y, Wu DP, Liu QF, Xu LP, Liu KY, Zhang XH, et al. Donor and recipient age, gender and ABO incompatibility regardless of donor source: validated criteria for donor selection for haematopoietic transplants. Leukemia. 2018;32(2):492–8. https://doi.org/10.1038/leu.2017.199.

    Article  CAS  PubMed  Google Scholar 

  52. Luo Y, Jin MQ, Tan YM, Zhao YM, Shi JM, Zhu YY, et al. Antithymocyte globulin improves GVHD-free and relapse-free survival in unrelated hematopoietic stem cell transplantation. Bone Marrow Transplant. 2019;54(10):1668–75. https://doi.org/10.1038/s41409-019-0502-8.

    Article  CAS  PubMed  Google Scholar 

  53. Yang F, Lu DP, Hu Y, Huang XJ, Huang H, Chen J, et al. Risk factors for graft-versus-host disease after transplantation of hematopoietic stem cells from unrelated donors in the china marrow donor program. Ann Transplant. 2017;22:384–401. https://doi.org/10.12659/aot.902805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tie RX, Zhang TS, Yang B, Fu HR, Han BQ, Yu J, et al. Clinical implications of HLA locus mismatching in unrelated donor hematopoietic cell transplantation: a meta-analysis. Oncotarget. 2017;8(16):27645–60. https://doi.org/10.18632/oncotarget.15291.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wang Y, Liu DH, Liu KY, Xu LP, Zhang XH, Han W, et al. Long-term follow-up of haploidentical hematopoietic stem cell transplantation without in vitro T-cell depletion for the treatment of leukemia: 9 years of experience at a single center. Cancer. 2013;119(5):978–85. https://doi.org/10.1002/cncr.27761.

    Article  PubMed  Google Scholar 

  56. Chang YJ, Xu LP, Wang Y, Zhang XH, Chen H, Chen YH, et al. Controlled, randomized, open-label trial of risk-stratified corticosteroid prevention of acute graft-versus-host disease after haploidentical transplantation. J Clin Oncol. 2016;34(16):1855–63. https://doi.org/10.1200/JCO.2015.63.8817.

    Article  CAS  PubMed  Google Scholar 

  57. Lin R, Wang Y, Huang F, Fan ZP, Zhang S, Yang T, et al. Two dose levels of rabbit antithymocyte globulin as graft-versus-host disease prophylaxis in haploidentical stem cell transplantation: a multicenter randomized study. BMC Med. 2019;17(1):156. https://doi.org/10.1186/s12916-019-1393-7.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Styczynski J, Tridello G, Koster L, Iacobelli S, van Biezen A, van der Werf S, et al. Death after hematopoietic stem cell transplantation: changes over calendar year time, infections and associated factors. Bone Marrow Transplant. 2020;55(1):126–36. https://doi.org/10.1038/s41409-019-0624-z.

    Article  PubMed  Google Scholar 

  59. Graubert TA, DiPersio JF, Russell JH, Ley TJ. Perforin/granzyme-dependent and independent mechanisms are both important for the development of graft-versus-host disease after murine bone marrow transplantation. J Clin Invest. 1997;100(4):904–11. https://doi.org/10.1172/JCI119606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang C, Wang XQ, Zhang RL, Liu F, Wang Y, Yan ZL, et al. Donor-derived CD19 CAR-T cell therapy of relapse of CD19-positive B-ALL post allotransplant. Leukemia. 2021;35(6):1563–70. https://doi.org/10.1038/s41375-020-01056-6.

    Article  CAS  PubMed  Google Scholar 

  61. Anwer F, Shaukat A, Zahid U, Husnain M, McBride A, Persky D, et al. Donor origin CAR T cells: graft versus malignancy effect without GVHD, a systematic review. Immunotherapy. 2017;9(2):123–30. https://doi.org/10.2217/imt-2016-0127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chen YH, Zhang X, Cheng YF, Chen H, Mo XD, Yan CH, et al. Long-term follow-up of CD19 chimeric antigen receptor T-cell therapy for relapsed/refractory acute lymphoblastic leukemia after allogeneic hematopoietic stem cell transplantation. Cytotherapy. 2020;22(12):755–61. https://doi.org/10.1016/j.jcyt.2020.08.002.

    Article  CAS  PubMed  Google Scholar 

  63. Gabelli M, Marks DI, Sharplin K, Lazareva A, Mullanfiroze K, Farish S, et al. Graft-versus-host disease induced by tisagenlecleucel in patients after allogeneic stem cell transplantation. Br J Haematol. 2021;195(5):805–11. https://doi.org/10.1111/bjh.17737.

    Article  PubMed  Google Scholar 

  64. Liu PJ, Liu MJ, Lyu C, Lu WY, Cui R, Wang J, et al. Acute graft-versus-host disease after humanized anti-CD19-CAR T therapy in relapsed B-ALL patients after allogeneic hematopoietic stem cell transplant. Front Oncol. 2020;10:573822. https://doi.org/10.3389/fonc.2020.573822.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lutfi F, Holtzman N, Siglin J, Bukhari A, Mustafa AM, Kim D, et al. Chimeric antigen receptor T-cell therapy after allogeneic stem cell transplant for relapsed/refractory large B-cell lymphoma. Br J Haematol. 2021;192(1):212–6. https://doi.org/10.1111/bjh.17121.

    Article  CAS  PubMed  Google Scholar 

  66. Ghosh A, Smith M, James SE, Davila ML, Velardi E, Argyropoulos KV, et al. Donor CD19 CAR T cells exert potent graft-versus-lymphoma activity with diminished graft-versus-host activity. Nat Med. 2017;23(2):242–9. https://doi.org/10.1038/nm.4258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cruz CR, Micklethwaite KP, Savoldo B, Ramos CA, Lam S, Ku S, et al. Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: a phase 1 study. Blood. 2013;122(17):2965–73. https://doi.org/10.1182/blood-2013-06-506741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Santomasso BD, Nastoupil LJ, Adkins S, Lacchetti C, Schneider BJ, Anadkat M, et al. Management of immune-related adverse events in patients treated with chimeric antigen receptor T-Cell therapy: ASCO guideline. J Clin Oncol. 2021;39(35):3978–92. https://doi.org/10.1200/JCO.21.01992.

    Article  CAS  PubMed  Google Scholar 

  69. Smith M, Zakrzewski J, James S, Sadelain M. Posttransplant chimeric antigen receptor therapy. Blood. 2018;131(10):1045–52. https://doi.org/10.1182/blood-2017-08-752121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Harris AC, Young R, Devine S, Hogan WJ, Ayuk F, Bunworasate U, et al. International, multicenter standardization of acute graft-versus-host disease clinical data collection: a report from the mount sinai acute GVHD international consortium. Biol Blood Marrow Transplant. 2016;22(1):4–10. https://doi.org/10.1016/j.bbmt.2015.09.001.

    Article  PubMed  Google Scholar 

  71. Dignan FL, Clark A, Amrolia P, Cornish J, Jackson G, Mahendra P, et al. Diagnosis and management of acute graft-versus-host disease. Br J Haematol. 2012;158(1):30–45. https://doi.org/10.1111/j.1365-2141.2012.09129.x.

    Article  CAS  PubMed  Google Scholar 

  72. Huang XJ, Liu DH, Liu KY, Xu LP, Chen H, Han W. Donor lymphocyte infusion for the treatment of leukemia relapse after HLA-mismatched/haploidentical T-cell-replete hematopoietic stem cell transplantation. Haematologica. 2007;92(3):414–7. https://doi.org/10.3324/haematol.10570.

    Article  PubMed  Google Scholar 

  73. Ye YS, Yang LX, Yuan XL, Huang H, Luo Y. Optimization of donor lymphocyte infusion for AML relapse after allo-HCT in the era of new drugs and cell engineering. Front Oncol. 2021;11:790299. https://doi.org/10.3389/fonc.2021.790299.

    Article  PubMed  Google Scholar 

  74. Yan CH, Liu DH, Xu LP, Liu KY, Zhao T, Wang Y, et al. Modified donor lymphocyte infusion-associated acute graft-versus-host disease after haploidentical T-cell-replete hematopoietic stem cell transplantation: incidence and risk factors. Clin Transplant. 2012;26(6):868–76. https://doi.org/10.1111/j.1399-0012.2012.01618.x.

    Article  PubMed  Google Scholar 

  75. Yang LX, Tan YM, Shi JM, Zhao YM, Yu J, Hu YX, et al. Prophylactic modified donor lymphocyte infusion after low-dose ATG-F-based haploidentical HSCT with myeloablative conditioning in high-risk acute leukemia: a matched-pair analysis. Bone Marrow Transplant. 2021;56(3):664–72. https://doi.org/10.1038/s41409-020-01088-7.

    Article  CAS  PubMed  Google Scholar 

  76. Ayuk F, Fehse B, Janson D, Berger C, Riecken K, Kroger N. Excellent proliferation and persistence of allogeneic donor-derived 41-BB based CAR-T cells despite immunosuppression with cyclosporine A. Haematologica. 2020;105(6):322–4. https://doi.org/10.3324/haematol.2019.245969.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Oluwole OO, Bouabdallah K, Munoz J, De Guibert S, Vose JM, Bartlett NL, et al. Prophylactic corticosteroid use in patients receiving axicabtagene ciloleucel for large B-cell lymphoma. Br J Haematol. 2021;194(4):690–700. https://doi.org/10.1111/bjh.17527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Giavridis T, van der Stegen SJC, Eyquem J, Hamieh M, Piersigilli A, Sadelain M. CAR T cell–induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med. 2018;24(6):731–8. https://doi.org/10.1038/s41591-018-0041-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hirayama AV, Turtle CJ. Toxicities of CD19 CAR-T cell immunotherapy. Am J Hematol. 2019;94(S1):S42-49. https://doi.org/10.1002/ajh.25445.

    Article  CAS  PubMed  Google Scholar 

  80. Li MH, Xue SL, Tang XW, Xu JY, Chen SN, Han Y, et al. The differential effects of tumor burdens on predicting the net benefits of ssCART-19 cell treatment on r/r B-ALL patients. Sci Rep. 2022;12(1):378. https://doi.org/10.1038/s41598-021-04296-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhao XY, Yang JF, Zhang X, Lu XA, Xiong M, Zhang JP, et al. Efficacy and safety of CD28- or 4–1BB-based CD19 CAR-T Cells in B Cell acute lymphoblastic leukemia. Mol Ther Oncolytics. 2020;18:272–81. https://doi.org/10.1016/j.omto.2020.06.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Teachey DT, Lacey SF, Shaw PA, Melenhorst JJ, Maude SL, Frey N, et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov. 2016;6(6):664–79. https://doi.org/10.1158/2159-8290.CD-16-0040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Penack O, Koenecke C. Complications after CD19+ CAR T-Cell therapy. Cancers. 2020. https://doi.org/10.3390/cancers12113445.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Thompson JA, Schneider BJ, Brahmer J, Achufusi A, Armand P, Berkenstock M, et al. Management of immunotherapy-related toxicities. National Comprehensive Cancer Network Clinical Practice Guildlines in Oncology (NCCN Guildlines®). V.4.2021. NCCN.org.

  85. Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, et al. Axicabtagene ciloleucel CAR T-Cell therapy in refractory large B-Cell lymphoma. N Engl J Med. 2017;377(26):2531–44. https://doi.org/10.1056/NEJMoa1707447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Norelli M, Camisa B, Barbiera G, Falcone L, Purevdorj A, Genua M, et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med. 2018;24(6):739–48. https://doi.org/10.1038/s41591-018-0036-4.

    Article  CAS  PubMed  Google Scholar 

  87. Frey N, Porter D. Cytokine release syndrome with chimeric antigen receptor T Cell therapy. Biol Blood Marrow Transplant. 2019;25(4):e123–7. https://doi.org/10.1016/j.bbmt.2018.12.756.

    Article  CAS  PubMed  Google Scholar 

  88. Ferrara JLM, Cooke KR, Pan L, Krenger W. The immunopathophysiology of acute graft-versus-host-disease. Stem cells. 1996;14(5):473–89. https://doi.org/10.1002/stem.140473.

    Article  CAS  PubMed  Google Scholar 

  89. Lee DW, Santomasso BD, Locke FL, Ghobadi A, Turtle CJ, Brudno JN, et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol Blood Marrow Transplant. 2019;25(4):625–38. https://doi.org/10.1016/j.bbmt.2018.12.758.

    Article  CAS  PubMed  Google Scholar 

  90. Wang Z, Han W. Biomarkers of cytokine release syndrome and neurotoxicity related to CAR-T cell therapy. Biomark Res. 2018;6:4. https://doi.org/10.1186/s40364-018-0116-0.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Hua JS, Zhang J, Zhang XY, Wu XX, Zhou LL, Bao XB, et al. Donor-derived anti-CD19 CAR T cells compared with donor lymphocyte infusion for recurrent B-ALL after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2021;56(5):1056–64. https://doi.org/10.1038/s41409-020-01140-6.

    Article  CAS  PubMed  Google Scholar 

  92. Xu XJ, Sun QH, Liang XQ, Chen ZT, Zhang XL, Zhou X, et al. Mechanisms of relapse after CD19 CAR T-Cell therapy for acute lymphoblastic leukemia and its prevention and treatment strategies. Front Immunol. 2019;10:2664. https://doi.org/10.3389/fimmu.2019.02664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Orlando EJ, Han X, Tribouley C, Wood PA, Leary RJ, Riester M, et al. Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia. Nat Med. 2018;24(10):1504–6. https://doi.org/10.1038/s41591-018-0146-z.

    Article  CAS  PubMed  Google Scholar 

  94. Fischer J, Paret C, El MK, Alt F, Wingerter A, Neu MA, et al. CD19 isoforms enabling resistance to CART-19 immunotherapy are expressed in B-ALL patients at initial diagnosis. J Immunother. 2017;40(5):187–95. https://doi.org/10.1097/CJI.0000000000000169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ma FT, Ho JY, Du H, Xuan F, Wu XL, Wang QL, et al. Evidence of long-lasting anti-CD19 activity of engrafted CD19 chimeric antigen receptor-modified T cells in a phase I study targeting pediatrics with acute lymphoblastic leukemia. Hematol Oncol. 2019;37(5):601–8. https://doi.org/10.1002/hon.2672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Melenhorst JJ, Chen GM, Wang M, Porter DL, Chen C, Collins MA, et al. Decade-long leukaemia remissions with persistence of CD4+ CAR T cells. Nature. 2022;602(7897):503–9. https://doi.org/10.1038/s41586-021-04390-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Guha P, Cunetta M, Somasundar P, Espat NJ, Junghans RP, Katz SC. Frontline science: functionally impaired geriatric CAR-T cells rescued by increased alpha5beta1 integrin expression. J Leukoc Biol. 2017;102(2):201–8. https://doi.org/10.1189/jlb.5HI0716-322RR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kotani H, Li G, Yao J, Mesa TE, Chen J, Boucher JC, et al. Aged CAR T cells exhibit enhanced cytotoxicity and effector funcGon but shorter persistence and less memory-like phenotypes. Blood. 2018;132:2047.

    Article  Google Scholar 

  99. Guedan S, Posey AD, Shaw C, Wing A, Da T, Patel PR, et al. Enhancing CAR T-cell persistence through ICOS and 4–1BB costimulation. JCI Insight. 2018. https://doi.org/10.1172/jci.insight.96976.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Qian LR, Li D, Ma L, He T, Qi FF, Shen JL, et al. The novel anti-CD19 chimeric antigen receptors with humanized scFv (single-chain variable fragment) trigger leukemia cell killing. Cell Immunol. 2016;304–305:49–54. https://doi.org/10.1016/j.cellimm.2016.03.003.

    Article  CAS  PubMed  Google Scholar 

  101. Myers RM, Li Y, Barz LA, Barrett DM, Teachey DT, Callahan C, et al. Humanized CD19-targeted chimeric antigen receptor (CAR) T Cells in CAR-Naive and CAR-Exposed children and young adults with relapsed or refractory acute lymphoblastic leukemia. J Clin Oncol. 2021;39(27):3044–55. https://doi.org/10.1200/JCO.20.03458.

    Article  CAS  PubMed  Google Scholar 

  102. Zhao Y, Liu ZF, Wang X, Wu HT, Zhang JP, Yang JF, et al. Treatment with humanized selective CD19CAR-T Cells shows efficacy in highly treated B-ALL Patients who have relapsed after receiving murine-based CD19CAR-T therapies. Clin Cancer Res. 2019;25(18):5595–607. https://doi.org/10.1158/1078-0432.CCR-19-0916.

    Article  CAS  PubMed  Google Scholar 

  103. Barrett DM, Singh N, Liu X, Jiang S, June CH, Grupp SA, et al. Relation of clinical culture method to T-cell memory status and efficacy in xenograft models of adoptive immunotherapy. Cytotherapy. 2014;16(5):619–30. https://doi.org/10.1016/j.jcyt.2013.10.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Xu Y, Zhang M, Ramos CA, Durett A, Liu E, Dakhova O, et al. Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. Blood. 2014;123(24):3750–9. https://doi.org/10.1182/blood-2014-01-552174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sommermeyer D, Hudecek M, Kosasih PL, Gogishvili T, Maloney DG, Turtle CJ, et al. Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia. 2016;30(2):492–500. https://doi.org/10.1038/leu.2015.247.

    Article  CAS  PubMed  Google Scholar 

  106. Biasco L, Izotova N, Rivat C, Ghorashian S, Richardson R, Guvenel A, et al. Clonal expansion of T memory stem cells determines early anti-leukemic responses and long-term CAR T-cell persistence in patients. Nat Cancer. 2021;2(6):629–42. https://doi.org/10.1038/s43018-021-00207-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Fraietta JA, Lacey SF, Orlando EJ, Pruteanu-Malinici I, Gohil M, Lundh S, et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T-cell therapy of chronic lymphocytic leukemia. Nat Med. 2018;24(5):563–71. https://doi.org/10.1038/s41591-018-0010-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zolov SN, Rietberg SP, Bonifant CL. Programmed cell death protein 1 activation preferentially inhibits CD28CAR-T cells. Cytotherapy. 2018;20(10):1259–66. https://doi.org/10.1016/j.jcyt.2018.07.005.

    Article  CAS  PubMed  Google Scholar 

  109. Rafiq S, Yeku OO, Jackson HJ, Purdon TJ, van Leeuwen DG, Drakes DJ, et al. Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo. Nat Biotechnol. 2018;36(9):847–56. https://doi.org/10.1038/nbt.4195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Liu SY, Deng BP, Yin ZC, Lin YH, An LH, Liu D, et al. Combination of CD19 and CD22 CAR-T cell therapy in relapsed B-cell acute lymphoblastic leukemia after allogeneic transplantation. Am J Hematol. 2021;96(6):671–9. https://doi.org/10.1002/ajh.26160.

    Article  CAS  PubMed  Google Scholar 

  111. Li Q, Mu J, Yuan JJ, Yang ZX, Wang J, Deng Q. Low level donor chimerism of CD19 CAR-T Cells returned to complete donor chimerism in patients with relapse after allo-hematopoietic stem cell transplant. Onco Targets Ther. 2020;13:11471–84. https://doi.org/10.2147/OTT.S277146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhao YL, Liu DY, Sun RJ, Zhang JP, Zhou JR, Wei ZJ, et al. Integrating CAR T-Cell therapy and transplantation: comparisons of safety and long-term efficacy of allogeneic hematopoietic stem cell transplantation after CAR T-Cell or chemotherapy-based complete remission in B-Cell acute lymphoblastic leukemia. Front Immunol. 2021;12:605766. https://doi.org/10.3389/fimmu.2021.605766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gu B, Shi BY, Zhang X, Zhou SY, Chu JH, Wu XJ, et al. Allogeneic haematopoietic stem cell transplantation improves outcome of adults with relapsed/refractory Philadelphia chromosome-positive acute lymphoblastic leukemia entering remission following CD19 chimeric antigen receptor T cells. Bone Marrow Transplant. 2021;56(1):91–100. https://doi.org/10.1038/s41409-020-0982-6.

    Article  CAS  PubMed  Google Scholar 

  114. Zhao HL, Wei JP, Wei GQ, Luo Y, Shi JM, Cui Q, et al. Pre-transplant MRD negativity predicts favorable outcomes of CAR-T therapy followed by haploidentical HSCT for relapsed/refractory acute lymphoblastic leukemia: a multi-center retrospective study. J Hematol Oncol. 2020;13(1):42. https://doi.org/10.1186/s13045-020-00873-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Jiang HW, Li CG, Yin P, Guo T, Liu L, Xia LH, et al. Anti-CD19 chimeric antigen receptor-modified T-cell therapy bridging to allogeneic hematopoietic stem cell transplantation for relapsed/refractory B-cell acute lymphoblastic leukemia: an open-label pragmatic clinical trial. Am J Hematol. 2019;94(10):1113–22. https://doi.org/10.1002/ajh.25582.

    Article  CAS  PubMed  Google Scholar 

  116. Poon LM, Bassett RJ, Rondon G, Hamdi A, Qazilbash M, Hosing C, et al. Outcomes of second allogeneic hematopoietic stem cell transplantation for patients with acute lymphoblastic leukemia. Bone Marrow Transplant. 2013;48(5):666–70. https://doi.org/10.1038/bmt.2012.195.

    Article  CAS  PubMed  Google Scholar 

  117. Cao XY, Qiu LY, Zhang JP, Xiong M, Zhao YL, Lu Y, et al. CART therapy followed by allo-HSCT for patients with B-cell acute lymphoblastic leukemia relapsing after the first hematopoietic stem cell transplantation. Zhonghua Xue Ye Xue Za Zhi. 2021;42(4):318–23. https://doi.org/10.3760/cma.j.issn.0253-2727.2021.04.009.

    Article  CAS  PubMed  Google Scholar 

  118. Tomblyn M, Lazarus H. Donor lymphocyte infusions: the long and winding road: how should it be traveled? Bone marrow transplant. 2008;42(9):569–79. https://doi.org/10.1038/bmt.2008.259.

    Article  CAS  PubMed  Google Scholar 

  119. Aldoss I, Otoukesh S, Zhang J, Mokhtari S, Ngo D, Mojtahedzadeh M, et al. Extramedullary disease relapse and progression after blinatumomab therapy for treatment of acute lymphoblastic leukemia. Cancer. 2022;128(3):529–35. https://doi.org/10.1002/cncr.33967.

    Article  CAS  PubMed  Google Scholar 

  120. Leahy AB, Newman H, Li Y, Liu H, Myers R, DiNofia A, et al. CD19-targeted chimeric antigen receptor T-cell therapy for CNS relapsed or refractory acute lymphocytic leukaemia: a post-hoc analysis of pooled data from five clinical trials. Lancet Haematol. 2021;8(10):e711–22. https://doi.org/10.1016/S2352-3026(21)00238-6.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pei-hua Lu or Kai-yan Liu.

Ethics declarations

Conflict of interest

All the authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Xy., Li, Jj., Lu, Ph. et al. Efficacy and safety of CD19 CAR-T cell therapy for acute lymphoblastic leukemia patients relapsed after allogeneic hematopoietic stem cell transplantation. Int J Hematol 116, 315–329 (2022). https://doi.org/10.1007/s12185-022-03398-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-022-03398-6

Keywords

Navigation