Skip to main content
Log in

Decreased LAG3 expression on T effector cells and regulatory T cells in SAA

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Objective

To investigate the expression of lymphocyte activation gene 3(LAG3) on CD8+T effector cells (Teffs), CD4+ Teffs and regulatory T cells (Tregs) in patients with severe aplastic anemia (SAA).

Methods

We detected the expression of LAG3 on CD8+ Teffs, CD4+ Teffs and Tregs in SAA patients and healthy controls (HC) by flow cytometry, and analyzed its correlation with the immune status and severity of the disease. ELISA was used to detect soluble LAG3(sLAG3).

Results

The expression of LAG3 on CD8+ Teffs, CD4+ Teffs and Tregs in untreated SAA patients were significantly lower than those in HC group (P < 0.05). After IST, the LAG3 expression of target cells increased to a level even higher than that in HC group (P < 0.05). LAG3 on T cell subsets was closely related to immune status and severity of the disease. The concentration of sLAG3 in these groups showed similar trends. LAG3 was not a prognostic factor of response.

Conclusion

The decreased expression of LAG3 on CD8+ Teffs, CD4+ Teffs and Tregs may be involved in the pathogenesis of SAA. LAG3 intervention may have therapeutic potential in treating SAA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sun Y, Liu C, Shao Z. Advances of pathogenesis and genetic abnormalities in acquired aplastic anemia. Zhonghua Nei Ke Za Zhi. 2019;5(58):401–4. https://doi.org/10.3760/cma.j.issn.0578-1426.2019.05.015.

    Article  Google Scholar 

  2. Liu C, Sun Y, Shao Z. Current concepts of the pathogenesis of aplastic anemia. Curr Pharm Des. 2019;25(3):236–41. https://doi.org/10.2174/1381612825666190313113601.

    Article  CAS  PubMed  Google Scholar 

  3. Goldberg MV, Drake CG. LAG-3 in cancer immunotherapy. Curr Top Microbiol Immunol. 2011;344:269–78. https://doi.org/10.1007/82_2010_114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bettini M, Szymczak-Workman AL, Forbes K, Castellaw AH, Selby M, Pan X, et al. Cutting edge: accelerated autoimmune diabetes in the absence of LAG-3. J Immunol. 2011;187(7):3493–8. https://doi.org/10.4049/jimmunol.1100714.

    Article  CAS  PubMed  Google Scholar 

  5. Durham NM, Nirschl CJ, Jackson CM, Elias J, Kochel CM, Anders RA, et al. Lymphocyte Activation Gene 3 (LAG-3) modulates the ability of CD4 T-cells to be suppressed in vivo. PLoS ONE. 2014;9(11):e109080. https://doi.org/10.1371/journal.pone.0109080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jha V, Workman CJ, McGaha TL, Li L, Vas J, Vignali DAA, et al. Lymphocyte Activation Gene-3 (LAG-3) negatively regulates environmentally-induced autoimmunity. PLoS ONE. 2014;9(8):e104484. https://doi.org/10.1371/journal.pone.0104484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Woo S-R, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ, et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 2012;72(4):917–27. https://doi.org/10.1158/0008-5472.CAN-11-1620.

    Article  CAS  PubMed  Google Scholar 

  8. Marsh JCW, Ball SE, Cavenagh J, Darbyshire P, Dokal I, Gordon-Smith EC, et al. Guidelines for the diagnosis and management of aplastic anaemia. Br J Haematol. 2009;147(1):43–70. https://doi.org/10.1111/j.1365-2141.2009.07842.x.

    Article  CAS  PubMed  Google Scholar 

  9. Huard B, Prigent P, Pagès F, Bruniquel D, Triebel F. T cell major histocompatibility complex class II molecules down-regulate CD4 + T cell clone responses following LAG-3 binding. Eur J Immunol. 1996;26(5):1180–6. https://doi.org/10.1002/eji.1830260533.

    Article  CAS  PubMed  Google Scholar 

  10. Huard B, Tournier M, Hercend T, Triebel F, Faure F. Lymphocyte-activation gene 3/major histocompatibility complex class II interaction modulates the antigenic response of CD4 + T lymphocytes. Eur J Immunol. 1994;24(12):3216–21. https://doi.org/10.1002/eji.1830241246.

    Article  CAS  PubMed  Google Scholar 

  11. Xu F, Liu J, Liu D, Liu B, Wang M, Hu Z, et al. LSECtin expressed on melanoma cells promotes tumor progression by inhibiting antitumor T-cell responses. Cancer Res. 2014;74(13):3418–28. https://doi.org/10.1158/0008-5472.CAN-13-2690.

    Article  CAS  PubMed  Google Scholar 

  12. Kouo T, Huang L, Pucsek AB, Cao M, Solt S, Armstrong T, et al. Galectin-3 shapes antitumor immune responses by suppressing CD8 + T Cells via LAG-3 and inhibiting expansion of plasmacytoid dendritic cells. Cancer Immunol Res. 2015;3(4):412–23. https://doi.org/10.1158/2326-6066.CIR-14-0150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mao X, Ou MT, Karuppagounder SS, Kam T-I, Yin X, Xiong Y, et al. Pathological α-synuclein transmission initiated by binding lymphocyte-activation gene 3. Science. 2016;353(6307):3374. https://doi.org/10.1126/science.aah3374.

    Article  CAS  Google Scholar 

  14. Wang J, Sanmamed MF, Datar I, Su TT, Ji L, Sun J, et al. Fibrinogen-like Protein 1 is a major immune inhibitory ligand of LAG-3. Cell. 2019;176(1–2):334–47.e12. https://doi.org/10.1016/j.cell.2018.11.010.

    Article  CAS  PubMed  Google Scholar 

  15. Yan L, Fu R, Liu H, Wang H, Liu C, Wang T, et al. Abnormal quantity and function of regulatory T cells in peripheral blood of patients with severe aplastic anemia. Cell Immunol. 2015;296(2):95–105. https://doi.org/10.1016/j.cellimm.2015.04.001.

    Article  CAS  PubMed  Google Scholar 

  16. Huang C-T, Workman CJ, Flies D, Pan X, Marson AL, Zhou G, et al. Role of LAG-3 in regulatory T cells. Immunity. 2004;21(4):503–13. https://doi.org/10.1016/j.immuni.2004.08.010.

    Article  CAS  PubMed  Google Scholar 

  17. Workman CJ, Vignali DAA. Negative regulation of T cell homeostasis by lymphocyte activation gene-3 (CD223). J Immunol. 2005;174(2):688–95. https://doi.org/10.4049/jimmunol.174.2.688.

    Article  CAS  PubMed  Google Scholar 

  18. Houot R, Perrot I, Garcia E, Durand I, Lebecque S. Human CD4 + CD25high regulatory T cells modulate myeloid but not plasmacytoid dendritic cells activation. J Immunol. 2006;176(9):5293–8. https://doi.org/10.4049/jimmunol.176.9.5293.

    Article  CAS  PubMed  Google Scholar 

  19. Liang B, Workman C, Lee J, Chew C, Dale BM, Colonna L, et al. Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II. J Immunol. 2008;180(9):5916–26. https://doi.org/10.4049/jimmunol.180.9.5916.

    Article  CAS  PubMed  Google Scholar 

  20. Zonghong S, Meifeng T, Huaquan W, Limin X, Jun W, Rong F, et al. Circulating myeloid dendritic cells are increased in individuals with severe aplastic anemia. Int J Hematol. 2011;93(2):156–62. https://doi.org/10.1007/s12185-010-0761-z.

    Article  PubMed  Google Scholar 

  21. Li N, Workman CJ, Martin SM, Vignali DAA. Biochemical analysis of the regulatory T cell protein lymphocyte activation gene-3 (LAG-3; CD223). J Immunol. 2004;173(11):6806–12. https://doi.org/10.4049/jimmunol.173.11.6806.

    Article  CAS  PubMed  Google Scholar 

  22. Annunziato F, Manetti R, Tomasévic I, Guidizi MG, Biagiotti R, Giannò V, et al. Expression and release of LAG-3-encoded protein by human CD4 + T cells are associated with IFN-gamma production. FASEB J. 1996;10(7):769–76. https://doi.org/10.1096/fasebj.10.7.8635694.

    Article  CAS  PubMed  Google Scholar 

  23. Buisson S, Triebel F. LAG-3 (CD223) reduces macrophage and dendritic cell differentiation from monocyte precursors. Immunology. 2005;114(3):369–74. https://doi.org/10.1111/j.1365-2567.2004.02087.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Delmastro MM, Styche AJ, Trucco MM, Workman CJ, Vignali DAA, Piganelli JD. Modulation of redox balance leaves murine diabetogenic TH1 T cells “LAG-3-ing” behind. Diabetes. 2012;61(7):1760–8. https://doi.org/10.2337/db11-1591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Numbers 81970116, 81770118, 81570111, 81870101; the Natural Science Foundation of Tianjin Municipal Science and Technology Commission under Grant Number 18ZXDBSY00140; and the Zhao Yi-Cheng Medical Science Foundation of Tianjin under Grant Number ZYYFY2019029.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zonghong Shao.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Liu, C., Jiao, T. et al. Decreased LAG3 expression on T effector cells and regulatory T cells in SAA. Int J Hematol 112, 757–763 (2020). https://doi.org/10.1007/s12185-020-02966-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-020-02966-y

Keywords

Navigation